タグ

2010年5月4日のブックマーク (13件)

  • 「なぜ人を殺してはいけないの?」に、ニーチェがマジレスしたら - 誰が得するんだよこの書評

    どうなるんだろう。 というわけで、ニーチェ「善悪の彼岸・道徳の系譜」の解説です。ニーチェは哲学や政治学をやるのなら必読だと思うのですが、いかんせん文学的な表現が多すぎて何を言っているのかよくわかないと投げ出す人もいるんじゃないですかね。というわけでニーチェの思想で一番使える「相対主義」にしぼって説明します。 通常の哲学とニーチェの哲学の違い 哲学は形而上学とも呼ばれています。メタフィジカルな学問だというのです。つまり物理的・現実的(フィジカル)なことにたいしてどのように人間が取り組むかという、現実(フィジカル)より上位(メタ)の構造・ルールについて研究するのです。たとえば、人間の肉体がどのような仕組みで動いているかというのはフィジカルな話ですが、人間はどのように生きているのか・どう生きるべきなのかというのは、メタフィジカルな話です。 さて、ニーチェがやっているのは通常のメタフィジカルな話で

    「なぜ人を殺してはいけないの?」に、ニーチェがマジレスしたら - 誰が得するんだよこの書評
  • リーマン予想 - Wikipedia

    リーマンは素数の分布に関する研究を行っている際にオイラーが研究していた以下の級数をゼータ関数と名づけ、解析接続を用いて複素数全体への拡張を行った。 ゼータ関数を次のように定義する(複素数 s の実部が 1 より大きいとき、この級数は絶対収束する)。 1859年にリーマンは自身の論文の中で、複素数全体 (s ≠ 1) へゼータ関数を拡張した場合、 と予想した。ここに、自明な零点とは負の偶数 (−2, −4, −6, …) のことである。自明でない零点は 0 < Re s < 1[注 2] の範囲にしか存在しないことが知られており(下記の歴史を参照)、この範囲を臨界帯という。 なお素数定理はリーマン予想と同値な近似公式[注 3]からの帰結であるが、素数定理自体はリーマン予想が真であるという仮定がなくとも証明できる。この注意は歴史的には重要なことで、実際リーマンがはっきりとは素数定理を証明できな

    リーマン予想 - Wikipedia
  • 群論 - Wikipedia

    群論(ぐんろん、英語: group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、点群で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代 - 1980年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀後半の数学において最も重要な業績の一つである。 群論は、歴史的に3つの源泉がある。数論、代数方程式論、幾何学である。数論の系統は、オイラーに始まり、ガウスの合同式の理論、およ

    群論 - Wikipedia
  • 冪根 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|nth root|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があります。

  • リー群 - Wikipedia

    リー群(リーぐん、英語: Lie group)は、群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。 G を台集合とする実リー群とは、G には実数体上有限次元かつ可微分[注釈 1]な実多様体の構造が定められていて、G はまた群の構造を持ち、さらにその群の演算である乗法および逆元を取る操作が多様体としての G 上の写像として可微分であるもののことである[注釈 2]。このような構造が入っているという前提の下で、通常は「G はリー群である」というように台を表す記号を使ってリー群を表す。また、実数(実多様体)を複素数(複素多様体)にとりかえて複素リー群の概念が定まる。 圏論の言葉を使うとリー群の定義が簡潔になる:リー群とは可微分多様体の圏の群対象のことである。この圏論に基づく定義は重要である。なぜなら

    リー群 - Wikipedia
  • 代数的構造 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Algebraic structure|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針につい

  • 体 (数学) - Wikipedia

    数学において、体(たい)とは、四則演算が(零で割ることを除いて)自由に行える代数系のことである。体の定義においては、積が可換か非可換かに必ずしも注視しないが、積が可換かそうでないかで目的意識や手法は大きく異なる。前者については可換体の項を、後者については斜体の項を参照されたい。 定義をきちんと述べれば、 「体とは、単位的環であって、その非零元の全体が乗法に関して群を成すものを言う」 あるいは 「体とは、非自明な単位的環であって、任意の非零元が乗法逆元を持つものを言う」 となる。 この代数的構造はリヒャルト・デーデキントとレオポルト・クロネッカーにより独立に(また極めて異なる方法で)導入されたが、ドイツ語で体を意味する Körper は、実数または複素数からなる集合で四則演算に関して閉じているものを当初は指していた。体をしばしば文字 K で表すのはこのドイツ語名による。体という言葉は「ある種

  • 環 (数学) - Wikipedia

    数学における環(かん、英: ring)とは、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系のことである。 最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。したがって、台集合は加法の下「加法群」と呼ばれるアーベル群を成し、乗法の下「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ[注 1]。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が

    環 (数学) - Wikipedia
  • p進数 - Wikipedia

    p 進数(ピーしんすう、英: p-adic number)とは、1897年に始まるクルト・ヘンゼルの一連の研究の中で導入された[1]、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば p 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、位取り記数法である「N 進法(表記)」を指して「N 進数」と呼ばれることがあるが、これは「p

  • ラムゼーの定理 - Wikipedia

    ラムゼーの定理(ラムゼーのていり)とは、数学の組合せ論における次の二つの定理のことである(フランク・ラムゼイ, 1930)。 無限ラムゼーの定理 r, sを正の整数とする。相異なるs 個の整数からなる集合全体をどのようにr 個の類に類別しても、ある整数の無限部分集合S が存在し、S に属する相異なる整数s個の集合は全て同一の類に属する。 有限ラムゼーの定理 s , r , k1, k2, ..., kr をki ≥ s となる非負の整数とする。このとき、次の性質を満たすRが存在する:n≥ Rならば、n 個の元からなる集合Nの s 個の元からなる部分集合全体をr個の類 C1, C2, ..., Crに類別したとき、あるiが存在して、ki個の元からなるNの部分集合で、その中のどの相異なるs 個の元からなる部分集合も類Ciに属するものが存在する。 以下、これを満たす最小のR をRr (s; k1

    ラムゼーの定理 - Wikipedia
  • 鳩の巣原理 - Wikipedia

    n = 10 羽の鳩が m = 9 つの巣の中にいる。したがって少なくとも1つの巣には2羽以上の鳩がいる。 鳩の巣原理(はとのすげんり、英: Pigeonhole principle)[1]、またはディリクレの箱入れ原理(ディリクレのはこいれげんり、英: Dirichlet's box principle, Dirichlet's drawer principle)、あるいは部屋割り論法とは、n 個の物を m 個の箱に入れるとき、n > m であれば、少なくとも1個の箱には1個より多い物が中にある、という原理である。別の言い方をすれば、1つの箱に1つの物を入れるとき、m 個の箱には最大 m 個の物しか入れることができない(もう1つ物を入れたいなら、箱の1つを再利用しないといけないから)、ということである。 鳩の巣原理は数え上げ問題の例の一つで、一対一対応ができない無限集合など、多くの形式的

    鳩の巣原理 - Wikipedia
  • オイラーの定数 - Wikipedia

    オイラー・マスケローニ定数 (英: Euler-Mascheroni constant)[1]、オイラーのγ (英: Euler's gamma) とも呼ぶ。ちなみに、オイラーはこの定数を表わすのに記号 C を用いた。γ を用いたのはロレンツォ・マスケローニである[2]。 この値は、およそ0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48677 26777 66467 09369 47063 29174 67495...である。 オイラーの定数は超越数であろうと予想されている。しかしながら、無理数であるかどうか、および、円周率との関係性も、数学上の未解決問題の一つである。

  • 代数的整数 - Wikipedia

    数論において代数的整数(だいすうてきせいすう、英: algebraic integer)とは、ある整数係数モニック多項式の根となる複素数のことである。代数的整数の全体 A は加法と乗法について閉じており、ゆえに複素数環 C の部分環をなす。この環 A は有理整数環 Z の C における整閉包となっている。 代数体 K の整数環 OK は K ∩ A に等しく、また体 K の極大整環(英: maximal order)となっている。全ての代数的整数はそれぞれ何らかの代数体の整数環に属している。x が代数的整数であることは、環 Z[x] がアーベル群として有限生成(即ち有限生成 Z-加群)であることと同値である。 以下は α ∈ K が代数的整数であることの同値な定義である。ここで K は代数体(有理数体 Q の有限拡大)とする。原始元定理より、この K は適当な代数的数 θ ∈ C によって

    代数的整数 - Wikipedia