タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとtechnologyとsoftwareに関するHeavyFeatherのブックマーク (4)

  • グーグルはコードの品質向上のため「バグ予測アルゴリズム」を採用している

    グーグルでは、社内のプログラマによって作り出される大量のコードの品質を保つため、チェックイン前にユニットテストとコードレビューが行われているそうです。しかし、コードが大量になってくると、ユニットテストやレビューをすり抜けるバグも少なからず発生します。 そこでコードの品質をさらに高めるために、グーグルでは「バグ予測アルゴリズム」を採用。バグがありそうな部分をレビュアーにアドバイスする仕組みを採用したとのこと。 そのバグ予測アルゴリズムとはどんなものなのか。Google Engineering Toolsブログに投稿されたエントリ「Bug Prediction at Google」(グーグルにおけるバグ予測)で説明されています。 ソースコードの修正履歴を基に予測 コードの中にバグがありそうな箇所を分析する手法としては、「ソフトウェアメトリクス」がよく用いられます。これはコードを静的に分析して、

    グーグルはコードの品質向上のため「バグ予測アルゴリズム」を採用している
  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • シムシティーの仕組み

    シムシティーを作り始めていちばん最初に考えたのは、街を一種の生き物のように表現できないかってことだった。 僕が街についてどう考えているかはすでに説明したけど、大事なのは街を構成する建物とか道路じゃなくって、そこでどんな活動が行なわれているかってことだと思うんだ。道路を車が走り、電車が動き、人々が動き回り、常に要素が変化し続ける“動きのある”システム。街を表現する方法っていうと誰でも地図を思い浮かべると思うけど、僕は動きがない地図じゃなくって、たとえば飛行機から眺めた街、動きのある世界をディスプレイに表現しようって考えた。それこそが僕の考える街の姿だからね。 それともう一つ考えたことは、プレイヤーに伝える情報をできるだけわかりやすく、それも“面白い”って思えるような形で表現しようってことだった。シミュレーション・ソフトっていうとたいてい数値や図表がたくさん出てくるけれど、数字が並んでいるのを

  • どうなっているの?あのソフトの仕組み - 今からでも遅くない!アルゴリズム入門:selfup

    Webの全体像を効率よく取り込み,分類する 「YSTのシステムは大まかに三つの機能に分かれます(図2)。最初は世界中のWebページをYSTのシステムに取り込む『クローリング(crawling)』という機能です」(Yahoo! JAPAN,リスティング事業部 検索企画室の宮崎光世氏,以下同)。 取り込むと簡単に言っても,Webページの数は膨大なうえ,更新の頻度や情報の質などがまちまちです。すべてのページに同じようにアクセスしていると非効率なことこの上ありません。そこで,限られた時間で質の良い検索ができるようにするための工夫をしています。例えば,クローリングを繰り返すうちに頻繁に更新されることがわかったページは短いサイクルでチェックし,ほとんど更新のないページはチェックの頻度を落とす,といったことをしているそうです。 ただ,更新の頻度が単に高いだけではダメです。重要性が高いと考えられるWebサ

    どうなっているの?あのソフトの仕組み - 今からでも遅くない!アルゴリズム入門:selfup
  • 1