
HashDoS脆弱性との戦い! Rubyコミッター・卜部昌平が明かすプログラム堅牢化のノウハウ 過去、HashDosの影響を受けたRuby。言語開発者はいかにしてこうした問題に対応してきたのでしょうか。コミッターである卜部氏の貴重な記録を公開します。 2011年の末頃、HashDoSという脆弱性が公表され、Rubyもこの影響を受けた。本稿の筆者である卜部昌平(うらべ・しょうへい/@shyouhei/以下、卜部)は、報告当初からRuby側のチームメンバーとしてプログラム本体の修正を担当した。以下はその記録である。言語開発者たちが普段どのようなことを考え、どういった技術を用いて開発やバグフィックスを行っているのか。その概要を知ってもらえれば幸いだ。 オブジェクト指向スクリプト言語 Ruby HashDoSの概要 なぜ約6年後の今、修正内容を公開するに至ったか? 前史:すでに内包されていたリスク
プログラムには、手続きを記述するという側面と、式を記述するという2つの側面があります。 そして、それぞれの基礎理論としては、チューリングマシンとラムダ計算があるので、プログラムの理論としては、この2系統を勉強する必要があると思います。 ラムダ計算というのは、式によってどのような計算ができるかという理論です。式による条件分岐はそれほど難しくなく、Yコンビネータなどの不動点定理で、式によって繰り返し処理が行えるということが証明されたので、どのような計算でもできるということになっています。 チューリングマシンの理論とは、どのような手続きがどのような性質をもつかという理論です。プログラムの性質というのは、ある出力を行うプログラムが、入力に対してどのように時間がかかるか、どのようにメモリを使うかというものです。そしてこれがアルゴリズムの理論になります。 ところで、ぼくはブログで「アルゴリズムを勉強す
Amazonにもレビューを書いたのですが、高村さんの「言語処理のための機械学習入門」を読みました。実はこの本を読むのは2回目で、1回目はドラフト版のレビューをさせていただく機会があったのですが、そのときは「言語処理研究者のための機械学習入門」というタイトルで、ちょっと敷居が高いのではないかとコメントしたら「研究者」の部分が削られたという経緯があったりしました。 それはともかくとして、以前読んだときは時間もなくて実装までする暇はなかったのですが、今度はもうちょっとじっくり読みたいなということで、このブログに書いてみようと思います。EMアルゴリズムは教師なし学習を確率モデルと最尤推定でやろうとするときに必ず出てくる手法で、隠れ変数や欠損値を含む色々なモデルに適用できる汎用的なフレームワークになっています。一般的には混合ガウス分布の場合をまず説明して、それがk-means法の一般化した形になって
昨年から続いているアルゴリズムイントロダクション輪講も、早いもので次は18章です。18章のテーマはB木(B Tree, Bツリー) です。B木はマルチウェイ平衡木(多分木による平衡木)で、データベースやファイルシステムなどでも良く使われる重要なデータ構造です。B木は一つの木の頂点にぶら下がる枝の本数の下限と上限を設けた上、常に平衡木であることを制約としたデータ構造になります。 輪講の予習がてら、B木を Python で実装してみました。ソースコードを最後に掲載します。以下は B木に関する考察です。 B木がなぜ重要なのか B木が重要なのは、B木(の変種であるB+木*1など)が二次記憶装置上で効率良く操作できるように設計されたデータ構造だからです。データベースを利用するウェブアプリケーションなど、二次記憶(ハードディスク)上の大量のデータを扱うソフトウェアを運用した経験がある方なら、いかにディ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く