次世代インターネットの 地平を切り拓く We are IIJ Research Laboratory. IIJ技術研究所について トピックス PAGE TOP
気まぐれと偶然となりゆきで、ここ2,3回はモナドを話題にしました。googleで「モナド」を引いてザッと眺めると、「モナドはむずかしいー」とか「モナドで挫折した」みたいな雰囲気が感じられて、説明芸人の血が少し騒ぎましたね。「なら、予備知識ゼロでモナドの説明をしてやろうじゃねーか」と。 タイトルはだいぶ煽っちゃった…… けど、ハッタリじゃないつもり…… けど、実際はどうかな? ※印刷のときはサイドバーが消えます。 内容: とりあえず、あたりさわりなくモナドの来歴を紹介する こんな課題を考えてみよう:副作用付き計算 カウントアップする関数達 カウントアップしたい意志を戻り値で伝える それでは、いったい誰がカウントアップをするのだ 関数の引数の型をCountup型にまで拡張する そして、これがモナドだ とりあえず、あたりさわりなくモナドの来歴を紹介する 今からここで説明する「モナド(monad)
ラムダ計算は, 多くのプログラミング言語, とくに関数型言語の原形になっています. ラムダ計算について理解しておくことは, 多くのプログラミング言語の習得に役立つでしょう. ラムダ計算はチューリング完全で, 計算能力としてはふつうのプログラミング言語と同じです. ラムダ計算で計算を書く訓練をしておくことは, 任意の計算を関数のみを使って(他の制御構文を用いずに)書くときに役立ちます. ふつうに書いたら煩雑な処理を, 関数型言語のやり方で書くとすっきりすることが多々あり, コードを自由自在に書くためには必須の考え方と言えるでしょう. 項 ラムダ計算の式を項(term)と言います. 項は変数, 抽象, 適用のいずれかです. 変数 変数(variable)はふつう1文字で書きます. 変数には関数内の束縛変数(bound variable)か自由変数(free variable)かという区別があり
モナドのすべて Haskell におけるモナドプログラミングの理論と実践に関する包括的ガイド Version 1.1.0 このチュートリアルは、モナドの概念とその関数プログラミングにおける応用に ついて、初中級の Haskell プログラマにわかりやすく、利用価値があるような 解説をすることを旨としています。読者は Haskell になれていることを前提と しますが、モナドに関する経験は要求していません。このチュートリアルは、多 くの題材をカバーしています。後半のセクションでは、前半の題材をよく理解し ていることを前提とします。順をおって、モナドプログラミングを例示するため のサンプルコードがたくさん用意されています。一読で、すべての題材を吸収し ようというのはお勧めできません。 このチュートリアルは 3 つの部分で構成されています。最初の部分は、 関数プログラミングにおけるモナドの基本的
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く