タグ

mathに関するbojovsのブックマーク (84)

  • 結合法則 - Wikipedia

    数学における結合性(けつごうせい、英: associative property[1],associativity)は、一部の二項演算がもつ性質である。演算が結合的であるための必要十分条件を結合法則(けつごうほうそく、英: associative law; 結合律、結合則)という。命題論理において、結合則(結合規則)は形式的証明における式に対する妥当(英語版)な置換規則(英語版)のひとつに挙げられる。 同一式にて同じ結合的演算が複数回現れる場合、それらの演算を施す順番は、被演算子の順序を変えない限り、結果に影響しない。つまり、(必要ならば中置記法と括弧を使った式に書き換えて)括弧の位置を入れ替えても、式の値は変わらない。例えば、 を例にとると、各行とも左辺と中辺で括弧の位置が変わっている(そして被演算子の現れる位置は変わっていない)けれども、その値である右辺は変わりないことを述べている。こ

    bojovs
    bojovs 2010/07/20
  • ファジィ集合 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ファジィ集合" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2012年2月) ファジィ集合(ファジィしゅうごう、英: fuzzy set)は、自然言語で表されるような曖昧な対象を定量化し、通常の集合(集合の要素であるかないかが、「ある」か「ない」のどちらかであるような集合)と同じように演算など(集合代数)の対象とされる、集合である。ZFCなどをベースとしているためあくまで累積階層的集合観(cumulative hierarchy notion of set)の理論である。 1965年にロトフィ・ザデーによって提唱された。集合に帰属す

    bojovs
    bojovs 2010/07/09
  • ランダウの記号 - Wikipedia

    スターリングの公式はランダウの記号を用いてと書くこともできる。 ランダウの記号(ランダウのきごう、英: Landau symbol)は、主に関数の極限における漸近的な挙動を比較するときに用いられる記法である。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (数字の0ではない)を用いることから(バッハマン-ランダウの)O-記法 (Bachmann-Landau O-notation[1])、ランダウのオミクロンなどともいう。 記号 O はドイツ語のOrdnungの頭字にちなむ[2]。 なおここでいうランダウはエトムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用いられる。 ランダウの記号 は 、x

    ランダウの記号 - Wikipedia
    bojovs
    bojovs 2010/07/04
  • ベン図 - Wikipedia

    ベンにゆかりの深いケンブリッジ大学のゴンヴィル・アンド・キーズ・カレッジにはある、ベン図を描いたステンドグラス ベン図(ベンず、もしくはヴェン図、英: Venn diagram)とは、複数の集合の関係や、集合の範囲を視覚的に図式化したものである。イギリスの数学者ジョン・ベン (John Venn) によって考え出された。 ベン図はレオンハルト・オイラーによるオイラー図の特殊な場合に相当する。 概要[編集] 図1. オイラーによる部分集合の表し方 複数の集合を考える際には、各集合をひとつの閉曲線(例えば円)で表し、相関をその閉曲線の交わり方によって表すことができる。 例えば、オイラーは、集合 A が集合 B の部分集合であることを、図1のように表した。 図2. ベンによる部分集合の表し方 しかし、ベンは同じことを図2のように表した。黒で塗りつぶされた領域は、その領域に元が存在しないことを表す

    ベン図 - Wikipedia
    bojovs
    bojovs 2010/06/25
  • オイラー図 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Euler diagram|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があ

    オイラー図 - Wikipedia
    bojovs
    bojovs 2010/06/25
  • 冪集合 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "冪集合" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2016年1月) S = {x, y, z} の冪集合 P(S) = { Φ, {x}, {y}, {z}, {x, y}, {y, z}, {z, x}, {x, y, z} } のハッセ図。要素数は 23 = 8 である。 冪集合(べきしゅうごう、英: power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。

    冪集合 - Wikipedia
    bojovs
    bojovs 2010/06/18
  • 可算集合 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "可算集合" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2015年10月) 可算集合(かさんしゅうごう、英語: countable set または denumerable set)または可付番集合とは、おおまかには、自然数全体と同じ程度多くの元を持つ集合のことである。各々の元に 1, 2, 3, … と番号を付けることのできる、すなわち元を全て数え上げることのできる無限集合と表現してもよい[1]。 有限集合も、数え上げることができる集合という意味で、可算集合の一種とみなすことがある[1]。そのため、はっきりと区別を付ける必要がある場

    bojovs
    bojovs 2010/06/18
  • 世界標準が期待される数式用フォント「STIX Fonts」

  • 計算複雑性理論 - Wikipedia

    計算複雑性理論(けいさんふくざつせいりろん、英: computational complexity theory)とは、計算機科学における計算理論の一分野であり、アルゴリズムのスケーラビリティや、特定の計算問題の解法の複雑性(計算問題の困難さ)などを数学的に扱う。計算量理論、計算の複雑さの理論、計算複雑度の理論ともいう。 「計算量」と「計算複雑性」はともに computational complexity に対応する語であるが、個々のアルゴリズムの効率に着目する文脈では「計算量」が広く用いられるのに対し、問題に内在する質的困難さを表す意識からは「複雑性」「複雑さ」が好まれる傾向がある。 概要[編集] 計算複雑性理論は計算可能関数の計算の複雑さを扱う。計算理論のもう一つの重要な分野である計算可能性理論では問題の解法があるかどうかだけを扱い、その複雑さや必要とする計算資源量は問わない点が異な

    bojovs
    bojovs 2010/06/09
  • 一階述語論理 - Wikipedia

    一階述語論理(いっかいじゅつごろんり、英: first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(英: second-order predicate logic)と呼び、さらなる一般化を加えた述語論理を高階述語論理(英: higher-order predicate logic)という。項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細はそれぞれの記事を参照。 命題論理では文を構成する最も基的な命題(原子命題)は命題記号と呼ぶ一つの記号によって表していた。それに対し、一階述語論理においては、最も基的な命題は原子論理式と

    bojovs
    bojovs 2010/06/09
  • 数理論理学 - Wikipedia

    数理論理学(すうりろんりがく、英 : mathematical logic)または現代論理学[1][2]、記号論理学[1][2]、数学基礎論[3]、超数学[4]は、数学の分野の一つであり[4]、「数学の理論を展開する際にその骨格となる論理の構造を研究する分野」を指す[3][注 1]。数理論理学(数学基礎論)と密接に関連している分野としては計算機科学[4]や理論計算機科学などがある[注 2][注 3]。 数理論理学の主な目的は形式論理の数学への応用の探求や数学的な解析などであり、共通課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくにACM Classification(英語版)に現れるもの)

    数理論理学 - Wikipedia
    bojovs
    bojovs 2010/06/09
  • 数学についてのwebノート トップページ

    算術 論理 /   集合 集合と数のあいだ [順序集合/代数系] / 数 解析学 ― 位相・距離、関数 ― 極限 [数列点列/関数]/連続 ― 微分 [ 1変数関数の微分 / 2変数関数の微分 / 多変数関数の微分 / 1変数ベクトル値関数の微分 / 多変数ベクトル値関数の微分 ] ― 積分 線形代数 索引 / 更新履歴 / 文献 算術上の知識 階乗/順列/組み合せ/二項定理/多項定理 Σの定義 Σの計算公式 : Σの結合則/ Σの分配則/ よく使われるΣの値の公式 二重和ΣΣの計算公式 Σの行列表現: 和の行列表現/ 平均の行列表現/ 2重和の行列表現 二次形式の行列表現/ 積和の行列表現/ 双一次形式の行列表現/ 偏差2乗和の行列表現/ 偏差積和の行列表現 累乗と指数法則 : べき・累乗の定義(自然数指数)/べき・累乗の定義(整数指数)/べき・累乗の定義(有理数指数)/べき・累乗の定義

    bojovs
    bojovs 2010/06/08
  • 論理記号

    論理記号:トピック一覧    ~   数学についてのwebノート 【命題論理】 否定(ない)を表す論理記号¬~ / 選言・論理和(または)を表す論理記号∨ / 「または」の否定¬(∨) 連言・論理積(かつ)を表す論理記号∧ / 「かつ」の否定¬(∧) 「ならば」を表す論理記号 / ¬(⇒) / 同値を表す論理記号⇔ 【述語論理】 全称記号・量化子∀(任意の) / 存在記号・量化子∃(ある~) / ¬∀と∃¬ / ¬∃と∀¬  / ∀(∧) / ∃(∨) ∀∀の入替 / ∃∃の入替 / ∃と∀の入替 →論理関連ページ : 恒真命題・恒偽命題 / 論理法則-同値 / 論理法則-含意 / 同値変形 →集合論の記号 : ∈/φ/Ω,U/⊂/=/∪/∩/+/-/△/c/(a,b)/{a,b}/A×B →総目次 /

    bojovs
    bojovs 2010/06/07
  • ラムダ計算 - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2020年5月) ラムダ計算(ラムダけいさん、英語: lambda calculus)は、計算模型のひとつで、計算の実行を関数への引数の評価(英語: evaluation)と適用(英語: application)としてモデル化・抽象化した計算体系である。ラムダ算法とも言う。関数を表現する式に文字ラムダ (λ) を使うという慣習からその名がある。アロンゾ・チャーチとスティーヴン・コール・クリーネによって1930年代に考案された。1936年にチャーチはラムダ計算を用いて一階述語論理の決定可能性問題を(否定的に)解いた。ラムダ計算は「計算可能な関数」とはなにかを定義するために用いられることもある。計算の意味論や型理論

  • 数学の面白い話してくれ ニュース速報BIP

    半径2センチの円の中心に半径1センチの円を貼り付ける。 半径2センチの円が地面に接してる所をA点として半径2センチの円を転がす。 ちょうどA点に戻るところまで、つまり1回転させたとき、半径1センチの円も1回転してるはずだ。 だが、半径1センチの円周と半径2センチの円周は違うのに1回転しかしていない。 原因は何か? コレ考えてみろ。

  • 写像 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "写像" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2021年4月) この項目は内容が専門的であり、一般の閲覧者にはわかりにくくなっているおそれがあります。 専門用語をわかりやすい表現にするための修正をして下さる協力者を求めています。(2021年4月) 写像(しゃぞう、英: mapping, map)は、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。関数、変換、作用素、射などが写像の同義語として用いられる[1][2]こともある。 ブルバキに見られるように、写像は

    写像 - Wikipedia
  • 写像(集合論)

    概要 数学には関数(function)という概念があります。 関数とは「ある変数に依存して決まる値」の事を指します。 集合論的には、「ある2つの変数の間の対応関係」が関数になります。 通常、関数という言葉は数 → 数の対応関係を指します。 それに対して、一般の集合 → 集合の対応関係を写像(mapping)と呼びます。 (両者の間にはあまり差はありません。ニュアンスの違い程度です。) 集合論における数学的考察の対象は全て集合であるわけですが、 写像というものも集合の1種として定義することが出来ます。 余談ですが、関数という言葉は function を音訳したものです。 (中国語では「関」は「ファン」と読みます。 もともとは「函」と書いていましたが、この文字は常用漢字ではないので、次第に「関」に置き換えられるようになりました。) 古来の日語には「h」や「f」の音はなく、は行の音は「p」の音

    写像(集合論)
    bojovs
    bojovs 2010/06/03
  • 集合と写像

    鳩の巣原理とよばれる数学原理は,n + 1 羽の鳩が n 個の巣に戻ろうとすれば必ずある巣には 2 羽以上の鳩が戻らなければならないというものである.ディリクレの部屋割り論法あるいは引き出し論法ともよばれる. 集合 写像 同値関係 有限集合の基定理 1. 集合 いろいろなものの集まりを集合といい,その集合を構成しているものを元という.属する元が1つもない集合を空集合といい,φ という記号で表す.A を集合とするとき,a ∈ A は a が A の元であることを表す. 集合 B の元がすべて集合 A の元であるとき,B は A の部分集合であるといい,B ⊂ A で表す.集合 A と集合 B が等しいとは,A ⊂ B かつ B ⊂ A ということをいい,A = B で表す.また,B ⊂ A であって,A = B ではないとき,B は A の真部分集合であるという. 問題 集合 A, B,

    bojovs
    bojovs 2010/06/03
  • ド・モルガンの法則 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "ド・モルガンの法則" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2018年6月) ド・モルガンの法則のベン図による表現。図1、図2のそれぞれの場合において、等式の両辺の集合は青い領域で図示される。 ド・モルガンの法則(ド・モルガンのほうそく、英: De Morgan's laws)は、ブール論理や集合の代数学において、論理和と論理積と否定(集合のことばでは、和集合と共通部分と差集合)の間に成り立つ規則性である。名前は数学者オーガスタス・ド・モルガン(Augustus de Morgan, 1806–1871)にちなむ。 この規則性

    ド・モルガンの法則 - Wikipedia
    bojovs
    bojovs 2010/05/28
  • 世界最大の数学者は誰だと思う?- 2ch世界ニュース (゚∀゚ )!

    1 :132人目の素数さん:2005/07/26(火) 02:20:30 ID:? 世界最高の数学者といえば、だれでしょう。 三人ほど挙げてみて下さい。まず三大数学者を決めましょう。 716 :132人目の素数さん:2008/08/31(日) 23:58:14 ID:? 普通に考えるならガウスです。 35 :132人目の素数さん:2005/07/27(水) 01:22:28 ID:? ガウス 36 :Euclid.Anal.Expert ◆wRpISOr80k :2005/07/27(水) 01:28:57 ID:? >>35 今俺のほうでも計算したが、その解は正しい。 105 :132人目の素数さん:2005/08/02(火) 06:20:29 ID:? 現代の統計学の基礎をつくったガウス。外せねえ。 593 :132人目の素数さん:2006/12/05(火) 19:24:14 ID: