ここ最近は機械学習にはまっていて、前々から気になっていたTensorFlowを試してみたいと思い、実際にWindowsにインストールしてみたので、その導入手順を紹介したいと思います。手順自体は比較的簡単だと思ったのですが、実際にやってみるといくつか引っかかったので、その点なども含め記録として残しておきたいと思います。 まず、TensorFlow(テンソルフロー)について簡単に説明しておくと、ディープラーニングが行える機械学習ライブラリです。Googleが開発しオープンソースで公開しているもので、実際にGoogleの中でも使われている実績のあるライブラリであり、そのため数多くの開発者がこのTensorFlowを利用しています。 WindowsにKerasとTensorFlow(GPU)をインストール! WindowsにKeras+TensorFlow(GPU)の環境構築に必要なのは以下の3つ
Keras というのは Python を使ってニューラルネットワークを組むためのフレームワーク。 Python でニューラルネットワークのフレームワークというと、他にも TensorFlow とか Chainer なんかが有名どころ。 Keras はそれらに比べると、より高い抽象度の API を提供しているところが特徴みたい。 実のところ Keras はデフォルトで TensorFlow をバックエンドとして動作する。 バックエンドとしては、他にも Theano が選べるらしい。 今回は Keras で組んだニューラルネットワークを GPU で学習させてみることにした。 そのとき CPU と比べて、どれくらい速くなるかを試してみたい。 使った環境は次の通り。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.12.3 BuildVersi
はじめに ポチポチKeras動かすのにどのような環境がいいのか考えてみました Keras + Docker + Jupyter Notebook + GPUの環境構築作業ログを紹介します Keras GitHub - fchollet/keras: Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on Theano or TensorFlow. わかりやすいインターフェースがかなり好き Docker TensorFlowで学ぶディープラーニング入門~畳み込みニューラルネットワーク徹底解説 を参考にしました この本ではDockerを使用してます 当初はvirtualenv使用して環境作る予定だったので、勉強になりました 環境の移植性いいね GPU使用できるのいいね Ju
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く