エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Python: k-NN Feature Extraction 用のライブラリ「gokinjo」を作った - CUBE SUGAR CONTAINER
記事へのコメント0件
- 人気コメント
- 新着コメント
このエントリーにコメントしてみましょう。
人気コメント算出アルゴリズムの一部にヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
関連記事
Python: k-NN Feature Extraction 用のライブラリ「gokinjo」を作った - CUBE SUGAR CONTAINER
表題の通り、k-NN Feature Extraction という特徴量抽出の手法に使う「gokinjo」という Python のライブ... 表題の通り、k-NN Feature Extraction という特徴量抽出の手法に使う「gokinjo」という Python のライブラリを作った。 今回はライブラリの使い方について紹介してみる。 github.com k-NN Feature Extraction で得られる特徴量は、Otto Group Product Classification Challenge という Kaggle のコンペで優勝者が使ったものの一つ。 手法自体の解説は以下のブログ記事を参照のこと。 なお、ブログ記事の中でも Python のコードを書いてるけど、よりナイーブな実装になっている。 blog.amedama.jp 以降、紹介に用いる環境は次の通り。 なお、ライブラリ自体にプラットフォームへの依存はない。 また、Python のバージョンは 3.6 以降をサポートしている。 $ sw_vers P