エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント2件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
機械学習モデルの局所的な解釈に着目したシステムにおける異常の原因診断手法の構想 - Fire Engine
著者 鶴田 博文, 坪内 佑樹 所属 さくらインターネット株式会社 さくらインターネット研究所 研究会 第8... 著者 鶴田 博文, 坪内 佑樹 所属 さくらインターネット株式会社 さくらインターネット研究所 研究会 第8回WebSystemArchitecture研究会 1. はじめに インターネットを介して利用するシステムの大規模化に伴い,システムの構成要素数の増大や,構成要素間の関係性の複雑化が進んでいる. そのため,システムの性能に異常が発生したときに,システムの状態を示す指標であるメトリックをシステム管理者が網羅的に目視することや,メトリック間の関係性を把握することができず,システムの異常原因を特定することが難しくなっている. この問題を解決するために,深層学習などの機械学習モデルを用いて,システムの異常の原因を診断する手法が提案されている[1,2]. これらの手法は,システム管理者が異常の根本原因を絞り込むために活用することが期待できる. しかし,原因診断を行うためには,事前に機械学習モデ
2021/06/08 リンク