エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント3件
- 注目コメント
- 新着コメント

注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Metric Learning 入門 - copypasteの日記
はじめに metric learningとは マハラノビス距離学習 deep metric learningとは siamese network triple... はじめに metric learningとは マハラノビス距離学習 deep metric learningとは siamese network triplet network サンプルの選び方と直感的理解 L2 softmax network MNISTで実験 実験条件 実験1-1: 表現力の確認 実験1-2: 未知クラスの表現力を確認 実験1-3: 奇数/偶数を学習 天気データで実験 データの準備 実験条件 実験2-1: 表現力の確認(その1) 実験2-2: 表現力の確認(その2) 実験2-3: 未知クラスの表現力を確認 まとめ おわりに 参考 はじめに metric learningについて学ぶ機会があったので忘れないうちに得た知識を書き留めておきます。学んだ期間は10日程度と短く、deep learningも含めて初心者ですので疑いながら読んでいただければと思います。間違いを見つけ
2025/03/01 リンク