エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Sparkで利用できるDeep Learningフレームワークまとめ - Gunosyデータ分析ブログ
記事へのコメント4件
- 人気コメント
- 新着コメント
人気コメント算出アルゴリズムの一部にヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
関連記事
Sparkで利用できるDeep Learningフレームワークまとめ - Gunosyデータ分析ブログ
こんにちは、Gunosyデータ分析部に所属している森本です。 主な担当業務は記事配信アルゴリズムの改善、... こんにちは、Gunosyデータ分析部に所属している森本です。 主な担当業務は記事配信アルゴリズムの改善、ログ基盤運用です。 最近良く聞く音楽はOne Direction - Live While We're Youngです。 本記事では、Sparkで利用できるDeep Learningフレームワークをまとめました。 GunosyではChainerで畳み込みニューラルネットワークを応用し、ユーザーのデモグラフィック推定を行っています。 WebDB Forum 2016 gunosy from Hiroaki Kudo Chainer以外にも多数のDeep LearningフレームワークがPythonを中心に数多く存在します。 TensorFlow, Keras, Caffe, Theanoなどなど。どのフレームワークが優れているかという回答は状況に応じて変わりますが、Pythonを使用する大