エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 人気コメント
- 新着コメント
関連記事
敵対的生成ネットワークをまじめに勉強して実装してみた - IKEPの制作ブログ
敵対的生成ネットワーク(Generative Adversarial Network, GAN)を使うことになったので、いろいろ勉強し... 敵対的生成ネットワーク(Generative Adversarial Network, GAN)を使うことになったので、いろいろ勉強しました。せっかくなので、備忘録として勉強したことをまとめておきたいと思います。これから、GANを勉強する方の参考にでもなればと思います。 GANとは Generative Adversarial Network(日本語では、敵対的生成ネットワーク)と呼ばれるディープラーニングを用いた生成モデルの一種です。 GeneratorとDiscriminatorという二つのニューラルネットから構成されており、二つを敵対させながら学習を進めることで、高精度なデータを生成することができるようになります。 よく、説明される例を挙げると、偽札屋と警察の関係に似ています。偽札屋(=Generator)は警察(=Discriminator)が本物と誤判別する偽札を作る。警察は、与