エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
調査観察データにおける因果推論(2) - 傾向スコアとIPW推定量,二重にロバストな推定量 - About connecting the dots.
記事へのコメント0件
- 人気コメント
- 新着コメント
このエントリーにコメントしてみましょう。
人気コメント算出アルゴリズムの一部にヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
関連記事
調査観察データにおける因果推論(2) - 傾向スコアとIPW推定量,二重にロバストな推定量 - About connecting the dots.
目次 調査観察データにおける因果推論(1) - 無作為割り当てされていないことの問題 - About connecting ... 目次 調査観察データにおける因果推論(1) - 無作為割り当てされていないことの問題 - About connecting the dots. 調査観察データにおける因果推論(2) - 傾向スコアとIPW推定量,二重にロバストな推定量 - About connecting the dots. 調査観察データにおける因果推論(3) - Rによる傾向スコア,IPW推定量,二重にロバストな推定量の算出 - About connecting the dots. 査観察データにおける因果推論(4) - Rで傾向スコアを出す際の共変量選択基準 - About connecting the dots. 補正法の概要 傾向スコア 平たくいえば,さまざまな共変量から割当群を予測するロジスティック回帰(またはプロビット回帰)を行って,得られた予測確率のことです.つまり「処置群に割り当てられる傾向をあらわすスコ