エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
RAGの評価:評価の必要性と問題点 - Beatrust techBlog
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
RAGの評価:評価の必要性と問題点 - Beatrust techBlog
本ブログはこんな人におすすめ RAG (Retrieval Augmented Generation)を使ったアプリケーションを開発し... 本ブログはこんな人におすすめ RAG (Retrieval Augmented Generation)を使ったアプリケーションを開発しているけど評価に関心のある人 LLM (Large Language Model)やRAGのハルシネーションをどう評価するのかに関心のある人 Ragas (RAGの評価ライブラリ:Retrieval augmented generation assessment)の挙動に興味がある人 こんにちは。私はBeatrustのML周辺のお手伝いをしている鈴木宏和と申します。今回はこれから3つのパートに分けて紹介させていただきますが、LLMの応用として特に注目を集めているRAG (Retrieval Augmented Generation)について、RAGの評価の必要性とアプローチ方法について考察しつつ、RAGに特化した評価ライブラリであるRagasの有用性に関する