エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Sarashina の性能評価 - SB Intuitions TECH BLOG
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Sarashina の性能評価 - SB Intuitions TECH BLOG
SB Intuitions の 岡 照晃、李 凌寒、水本 智也、柴田 知秀 です。 本記事では Sarashina の性能評価に... SB Intuitions の 岡 照晃、李 凌寒、水本 智也、柴田 知秀 です。 本記事では Sarashina の性能評価について解説します。 Sarashina は SB Intuitions で開発している日本語の大規模言語モデル(Large Language Model; LLM)です。 LLM の学習は一般に事前学習のステップとチューニングのステップから成ります。 事前学習では、大規模テキストを用い、与えられたテキストの続きを予測していく次単語予測の性能が上がるように学習を行います。 チューニングでは、ユーザ発話とシステム応答がペアになったチューニング用データから対話的にタスクを遂行する能力を獲得します。 先月、以下の 5つの事前学習モデルを公開しました。 モデルの学習に関する詳細はこちらのブログ記事をご覧ください。 Sarashina1-7B Sarashina1-13B S