タグ

ブックマーク / www.astroarts.co.jp (7)

  • ダークマターの塊が天の川銀河を貫通した痕が見つかった

    天の川銀河できわめて高速の分子雲が見つかった。この分子雲には巨大なシェル構造や空洞などが付随していて、銀河円盤をダークマターの塊が通過した痕跡とみられる。 【2024年6月10日 国立天文台 野辺山宇宙電波観測所】 私たちが属している天の川銀河は、直径約10万光年の円盤部と中心のバルジ、それらを取り囲む直径約30万光年のハローで構成されている。円盤部分には主に星と星間ガスがあり、水素分子を主成分とする濃い星間ガス雲は分子雲と呼ばれている。一方、ハローにはダークマター(暗黒物質)が広がっていて、その中を球状星団や矮小銀河、希薄な水素原子雲などのハロー天体が飛び交っている。 天の川銀河のイラストと主な構造。中心部には老齢の星が多く集まったバルジ(Bulge)と呼ばれる膨らんだ構造がある。銀河を取り巻く巨大な球状の構造はハロー(Halo)と呼ばれ、希薄な星間物質や球状星団(Globular cl

    ダークマターの塊が天の川銀河を貫通した痕が見つかった
  • 冥王星の大気崩壊が急速に進行

    2019年7月に起こった冥王星による恒星の掩蔽を観測したデータの解析から、掩蔽観測時の冥王星の大気圧が2016年と比べて約20%低下したことが明らかになった。 【2020年6月18日 京都大学】 冥王星は、太陽系外縁部のカイパーベルトに存在する直径2400km程度の準惑星だ。太陽から約50億km、地球と太陽との距離のおよそ30倍も離れた軌道を公転している冥王星は、太陽系探査において長らく謎に包まれた未到のフロンティアだった。 冥王星の大きな謎の一つとして大気が挙げられる。冥王星における大気の生成は、地表を覆う窒素を中心とした氷の昇華によるものと考えられている。冥王星の公転軌道は楕円の度合いが大きいため、太陽からの距離の変化が大きく、それにつれて表面の日射量が変わる。その結果、表面にある氷の昇華と凝結のバランスも大きく変わると考えられてきた。ところが、冥王星が1989年以降は太陽から遠ざかり

    冥王星の大気崩壊が急速に進行
  • ダークマターの影響が小さかった、100億年前の銀河

    銀河形成がピークを迎えていた約100億年前の宇宙においては、大質量の星形成銀河では普通の物質が支配的だったことが示唆された。ダークマターの影響がかなり大きいと考えられている現在の宇宙の銀河とは異なる結果である。 【2017年3月17日 ヨーロッパ南天天文台】 近傍の宇宙に存在する渦巻銀河の回転速度を測定してみると、内側のほうと外縁部であまり違わないことがわかる。これは銀河内にダークマター(暗黒物質)が存在し、星やガスがない部分にも大量の質量があるからだと考えられている。もし銀河の質量が星やガスなど電磁波で観測できるものだけの場合、外縁部の回転速度は小さくなるはずである。 独・マックスプランク地球外物理学研究所のReinhard Genzelさんたちの国際研究チームは、ヨーロッパ南天天文台の超大型望遠鏡VLTで100億年前の遠方宇宙に存在する6つの巨大な星形成銀河の回転速度を調べた。この時代

    ダークマターの影響が小さかった、100億年前の銀河
  • 新種族の天体を大量に発見、ミッシング・バリオンの可能性

    ハッブル宇宙望遠鏡でとらえた画像を用いて「宇宙の明るさ」のゆらぎを解析したところ、これまでゴミと思われていた光の点が、新たな種族の天体であることが明らかになった。従来の観測では把握できなかった「ミッシング・バリオン」かもしれない。 【2019年8月1日 東京都市大学】 これまでに赤外線宇宙望遠鏡「IRTS」や「あかり」による近赤外線領域の観測から、宇宙の明るさ、およびその「ゆらぎ」が既知の天体から予想されるより大きいことが見出されている。また、可視光線でも空が予想より明るいことが確認されており、宇宙には「未知の光源」が存在することが予想されていた。 JAXA宇宙科学研究所の松敏雄さんと東京都市大学の津村耕司さんは、ハッブル宇宙望遠鏡が撮影した、現時点で人類が手にしている最も暗い天体まで写っている「ハッブル・エクストリーム・ディープ・フィールド」の画像の空間構造を解析し、新たな情報を引き出

    新種族の天体を大量に発見、ミッシング・バリオンの可能性
  • 初めてとらえられた銀河団衝突の瞬間

    X線天文衛星「すざく」や電波望遠鏡などを用いた観測で、銀河団同士が衝突するときに発生する衝撃波が初めて観測された。銀河団の形成と進化の過程を理解するうえで重要な成果となる。 【2019年7月16日 理化学研究所/宇宙科学研究所】 宇宙では数百億~数千億個の星が集まって銀河が形成され、さらにその銀河が数百個以上も集まって銀河団が形成される。銀河団は宇宙の大規模構造の「節」の部分に対応していて、その直径は数億光年にも達しており、重力で束縛された天体としては宇宙で最大のものだ。 銀河団は宇宙の歴史の中で、互いに衝突と合体を繰り返すことで成長してきたと考えられている。銀河団同士の衝突が完了するまでには数十億年程度かかると推定されており、ある銀河団で衝突の全ての段階を観測することは不可能だ。そのため、銀河団の進化の歴史を調べるには、異なる衝突段階にある銀河団をスナップショットとして多数観測する必要が

    初めてとらえられた銀河団衝突の瞬間
  • 天王星や海王星内部の磁場の起源は「金属の水」

    水を主成分とする試料をレーザーで圧縮する実験で、水が光を強く反射する金属状態になることが確かめられた。天王星や海王星内部の磁場の源が「金属の水」に流れる電流であることを示す結果である。 【2019年7月17日 岡山大学】 「巨大氷惑星」に分類される天王星と海王星は水を主成分とした惑星で、そこに少量の炭素と窒素を含む分子(メタンやアンモニア)が混じっていると考えられている。 ボイジャー2号が撮影した天王星(左)と海王星(右)。大きさは地球の約4倍、質量は約15倍(天王星)および約17倍(海王星)。中央は大きさの比較のために示した地球(提供:岡山大学プレスリリースより、以下同) 1980年代に天王星と海王星に相次いで到達したNASAの探査機「ボイジャー2号」によって、これらの氷惑星の内部から、地球の数十倍の強さの磁場が発生していることが明らかになった。このような強い磁場が作られるためには、氷惑

    天王星や海王星内部の磁場の起源は「金属の水」
  • 表面温度が数百度しかない、もっとも低温の褐色矮星の発見

    表面温度が数百度しかない、もっとも低温の褐色矮星の発見 【2010年6月30日 JPL】 これまで知られている中でもっとも低温と思われる星が発見された。見つかったのは、表面温度が摂氏180〜330度ほどしかない褐色矮星だ。太陽系周辺に同種の天体は数百個存在している可能性が示唆されており、今後の観測次第では、わたしたちの描く太陽系周辺の光景が一変するかもしれない。 スピッツァーによる、これまででもっとも低温と思われる褐色矮星の1つ「SDWFS J143524.44+335334.6」(画像中央の赤い点)。クリックで拡大(提供:NASA/JPL-Caltech) 太陽系周辺における褐色矮星の分布をシミュレーションした画像(白・赤・黄:太陽をはじめとする恒星、暗い赤:存在が予想された数百個の褐色矮星、緑;スピッツァーが今回観測した領域)。クリックで拡大(提供:AMNH/UCB/NASA/JPL-

    gav
    gav 2010/07/01
    これだけ見えにくかった天体を確認できるとなると、宇宙の全質量という観点からも興味津々
  • 1