タグ

algorithmとsvmに関するhiromarkのブックマーク (9)

  • TokyoNLP#5で「パーセプトロンで楽しい仲間がぽぽぽぽ〜ん」を発表しました - シリコンの谷のゾンビ

    TokyoNLP#5に参加して「パーセプトロンで楽しい仲間がぽぽぽぽ〜ん」というタイトルで発表しました.発表資料 (検閲後) をuploadしました. なお,2種類のAveraged Perceptronというものがあるというような発表をしてしまいましたが,実は両方とも実質同じアルゴリズムでした.片方はVoted Perceptronの近似 [Carvalho+ 06] という文脈.もう一方は構造学習を行うStructured Perceptron [Collins 02]の文脈で提案されています.その部分を修正しました.@uchumikさんのコメントで気が付きました.どうもありがとうございます. TokyoNLP#5 パーセプトロンで楽しい仲間がぽぽぽぽ〜ん View more presentations from sleepy_yoshi 音声付きで用意したネタ.どうやら徹夜明けの妙な

    TokyoNLP#5で「パーセプトロンで楽しい仲間がぽぽぽぽ〜ん」を発表しました - シリコンの谷のゾンビ
  • データマイニング2010 - データベース高度利用者養成

    レポート3について † ナイーブベイズでUSPSデータの予測をする問題は,現状のライブラリでは動かないことが判明しましたので,回答しなくて結構です. ↑ レポート4について † SVMのレポートの所,デフォルトでは回帰分類(regression)を行って数値予測をしてしまいます. 正しくクラス分類を行うために,モデルの作成の所は,以下の様に typeを追加してください. svm(training_data,training_class,type="C-classification", mode="〜") ↑

  • Simple SVM - アルゴリズムマニア2.0

    SMOよりも優れたアルゴリズムにSimple SVMというのがあるそうだ。SSVM : A Simple SVM Algorithmhttp://www.stat.purdue.edu/~vishy/papers/VisMur02b.pdf しかし、このアルゴリズムを理解してC#で実装したいんだけれど、なんだか論文がすごく難しくて挫折を繰り返してしまう。誰か素人でもわかるように教えてください(´・ω・`) 余談だけれど、このSimple SVMとやらは10回以下で収束するって書いてある。オンライン学習というのが研究されているが、オンライン学習はsimple SVMの10倍以下の高速化しか望めないし、解の質もよくわからないということなのかな?

    hiromark
    hiromark 2010/04/01
    あとでよむ
  • ところでサポートベクターマシンって何なの? - きしだのHatena

    最近、機械学習とか、そのアルゴリズムのひとつであるサポートベクターマシンとかやってるわけですが、そもそも機械学習ってなんなんでしょか? 機械学習ってのは、なんとなく与えられた点の分類から、新たに与えられた点の分類を推測するのですが、ようするに、点が与えられたときにそこから分類の領域を推測しておいて、新たな点がきたときにはどの領域に入るかを判別するのです。 ニューラルネットワークは、名前にニューロンとかついてて、とてもステキな響きがするのですが、あれは関数のあてはめを行っているのです。そうやって関数をあてはめることで、領域の境界面を求めます。 NN法は、学習とかせず、一番近いデータが同じ分類になるはずという戦略でやってます。 サポートベクターマシンも考え方としてはNN法と同じで、新しい点がやってくると、学習したそれぞれの点までの近さを計算して、一番ちかい分類を求めます。そのため、学習データが

    ところでサポートベクターマシンって何なの? - きしだのHatena
    hiromark
    hiromark 2009/08/17
    ふむ、わかりやすい。
  • サポートベクターマシン入門

    次へ: はじめに サポートベクターマシン入門 栗田 多喜夫 Takio Kurita 産業技術総合研究所 脳神経情報研究部門 Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aist.go.jp visitors since Jul. 19, 2002. 概要: 最近、サポートベクターマシン(Support Vector Machine, SVM)と呼ばれるパター ン認識手法が注目されており、ちょっとしたブームになっている。カーネルトリッ クにより非線形の識別関数を構成できるように拡張したサポートベクターマシン は、現在知られている多くの手法の中でも最も認識性能の優れた学習モデルの一 つである。サポートベクターマ

    hiromark
    hiromark 2009/08/17
    読む。
  • やる夫はSVMを実装したようです やる夫で学ぶ非線形なSVM

    Sep 21, 2008Download as PPT, PDF16 likes5,679 views

    やる夫はSVMを実装したようです やる夫で学ぶ非線形なSVM
    hiromark
    hiromark 2009/08/17
    おもしろいな、このスライド。
  • Support Vector Machine

    最近よく巷で耳にするモノ. SVM, Support Vector Machine, さぽーとべくたーましん. これっていったい,どんなもんなんでしょう. なにやら便利そうなモノらしいので,ちょいと調べて要点をまとめてみようかな,なんて. でも,ただまとめただけだとそのへんの記事を読むのとなんにも変わらないので, コーディングするために必要な知識を中心にまとめてみることにします.

    hiromark
    hiromark 2009/08/13
    わかったつもりになってほったらかしにしてた分野なのでちゃんと勉強する。
  • しかしSVMも最近は速いらしい - 射撃しつつ前転 改

    Complement Naive BayesがSVMより速いよーと主張していたので、SVMもなんか最近は速くなってるらしいよ、という事を紹介してみたい。近年はSVMなどの学習を高速に行うという提案が行われており、実装が公開されているものもある。その中の一つにliblinearという機械学習ライブラリがある。ライブラリ名から推測できる通り、liblinearではカーネルを使うことが出来ない。しかし、その分速度が速く、大規模データに適用できるという利点がある。 liblinearを作っているのはlibsvmと同じ研究グループで、Chih-Jen Linがプロジェクトリーダーであるようだ。libsvmはかなり有名なライブラリで、liblinearにはそういった意味で安心感がある。(liblinearの方は公開されてしばらくは割とバグがあったらしいけど。) liblinearにはL1-SVM, L

    しかしSVMも最近は速いらしい - 射撃しつつ前転 改
    hiromark
    hiromark 2008/12/17
    SVM も頑張っているというお話。詳細フォローしなきゃ。
  • きまぐれ日記: Zinnia: 機械学習ベースのポータブルなオンライン手書き文字認識エンジン

    オンライン手書き文字認識エンジンZinniaを公開しました。 http://zinnia.sourceforge.net/index-ja.html Zinniaは機械学習アルゴリズム SVM を用いたポータブルで汎用的な オンライン手書き文字認識エンジンです。Zinniaは組み込みの容易さと汎用性を高めるために、 文字のレンダリング機能は持っていません。Zinniaは文字のストローク情報を座標の連続として受け取り、 確からしい順にスコア付きでN文字の認識結果を返すだけに機能を限定しています。 また、認識エンジンは完全に機械学習ベースであるために、文字のみならずユーザの任意のマウス・ペンストロークに対して任意の文字列をマッピングするような認識エンジンを小コスト作成することができます。 2年前に、Ajax手書き文字認識と言うものを作ったのですが、その認識エンジンをスクラッチからポータブルでつ

    hiromark
    hiromark 2008/09/17
    SVM を使った手書き文字認識エンジン
  • 1