タグ

programmingとAlgorithmに関するminekのブックマーク (11)

  • プレイヤーが自然に感じる乱数の作り方 - A Successful Failure

    2015年11月10日 プレイヤーが自然に感じる乱数の作り方 Tweet ゲームでは擬似乱数がよく使われるが、ある種のゲーム数学的に精度の高い擬似乱数(たとえばMT)を用いているにも関わらず、コンピュータが有利になるように乱数を操作していると批判に晒されている。 実際、数学的に正しい乱数と、プレイヤーが自然と感じる乱数には、ある種の差が存在する。北陸科学技術大学院大学の池田研究室では、プレイヤーに自然に感じる乱数の生成に関する研究を行っている。 プレイヤーが不自然に感じる理由 数学的に正しい乱数に対してプレイヤーが不自然に感じる理由としては認知バイアスが考えられる。特に事象に関連する認知バイアスとして、次が挙げられている[1]。 確証バイアス: 人は自分のもつ仮説に一致する情報を求め、反証となる証拠を避ける傾向がある。ひとたび、サイコロが操作されていると感じると、それ以降、その仮説に都

    プレイヤーが自然に感じる乱数の作り方 - A Successful Failure
  • おねえさんを組み合わせ爆発から救う:完結編おねえさんは星になった - きしだのHatena

    おねえさんを組み合わせ爆発から救うために、経路をZDDとして表したら、すっきりと経路情報が扱えました。 http://d.hatena.ne.jp/nowokay/20121018#1350528607 あとは、このZDDを効率よく構築できれば、おねえさんを救えそうです。このZDDの構築には、クヌース先生の開発したSimpathアルゴリズムを使うと非常に効率よく構築できます。 前回生成したZDDを見ると、同じノードにまとまっているものがいくつかあることがわかります。特に後半になるとどんどん同じパターンになるものがまとめられていきます。 つまり、この経路問題のZDDを構築するときには、いかに同じパターンになるものをまとめるかが鍵になるということです。 Simpathでは、辺の端だけに注目して、同じパターンになっていればそれ以降のノードを使いまわすという考え方で、ノードをまとめていきます。 つ

    おねえさんを組み合わせ爆発から救う:完結編おねえさんは星になった - きしだのHatena
  • Algorithms with Python

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

  • 有名どころな機械学習手法の年表 - 木曜不足

    ちょっと機械学習の比較的有名なモデルやアルゴリズムの初出について年表を作ってみた。 って今週末用の資料なんだけどねw 1805 Method of Least Squares 1901 PCA (Principal Component Analysis) 1905 Random Walk -1925 Logistic Regression 1936 Fisher's Linear Discriminant Analysis 1946 Monte Carlo Method 1948 n-gram model 1950 RKHS (Reproducing Kernel Hilbert Space) 1950s Markov Decision Process -1957 Perceptron 1958 Kalman Filter 1960s Hidden Markov Model -1961 N

    有名どころな機械学習手法の年表 - 木曜不足
  • コンピュータ将棋の現状:三人寄れば文殊の知恵は正しいか? - A Successful Failure

    4月2日に情報処理学会が日将棋連盟に「コンピュータ将棋」で挑戦状を送ったことが話題になった*1。日将棋連盟は挑戦を受諾、女流棋界の第一人者、清水市代女流王将・女流王位が対戦相手と決まった。対戦は今秋から順次行われるという。 情報処理学会の挑戦状に関するFAQによれば、対戦ソフトウェアに関して次のように記されている。 Q:対戦ソフトウェアは既に決まっているか A:合議アルゴリズムを用いる方針になっています。複数のソフトウェアを疎結合で並列計算させて、それらの意見を集約して、次の一手を決定する手法です。現在のところ、限られた実験では効果が認められており、これを実際の対局に用いる方向で検討しています。個々の参加ソフトウェアの候補は、プロジェクトに現時点で参加しているGPS将棋、Bonanza、激指、YSS、TACOS、柿木将棋などです。これを実用的にどのように組みあわせるのかは、実験を元に決

    コンピュータ将棋の現状:三人寄れば文殊の知恵は正しいか? - A Successful Failure
  • 経路探索アルゴリズムの「ダイクストラ法」と「A*」をビジュアライズしてみた - てっく煮ブログ

    as詳解 ActionScript 3.0アニメーション ―衝突判定・AI・3DからピクセルシェーダまでFlash上級テクニック を読んでいて、経路探索のアルゴリズムで A* が取り上げられていました。A* については、いろいろ検索して調べたりもしたのですが、やっぱりに書いてあると理解しやすいですね。せっかくなので自分流に実装してビジュアライズしてみました。ダイクストラ法まずは A* の特別なケースでもあるダイクストラ法から見ていきます。クリックすると探索のシミュレーションが開始します。スタート地点(S)からゴール(G)への探索が始まります。色がついたところが「最短経路が決定した場所」です。スタート地点から少しずつ探索が完了していきます。半分ぐらい完了しました。まだまだ進みます。最後まで終わりました。最短経路を黒色矢印で表示しています。ダイクストラ法は、スタート地点から近いノード(=マス

  • Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure

    画像内に映り込んだ所望のオブジェクトを排除し、違和感の無い画像を生成するシーン補完技術に関しては近年複数の研究成果が発表されている。しかし中でも2007年のSIGGRAPHにて米カーネギメロン大のJames HaysとAlexei A. Efrosが発表した手法*1はブレークスルーとなりうる画期的なものだ。 論より証拠、早速適用例を見てみよう。エントリで利用する画像はPresentationからの引用である。元画像の中から邪魔なオブジェクト等の隠蔽すべき領域を指定すると、その領域が補完された画像が自動的に生成される。 アルゴリズム 効果は抜群だがアイデア自体は単純なものだ。Web上には莫大な数量の画像がアップされており、今や対象となる画像の類似画像を一瞬にして大量に検索することができる。そこで、検索された類似画像で隠蔽領域を完全に置き換えてしまうことで違和感の無い補完画像を生成するのだ。

    Web上の膨大な画像に基づく自動画像補完技術の威力 - A Successful Failure
  • グラフ理論ライブラリのJGraphTを使ってみた - kaisehのブログ

    JGraphT JGraphTは、Javaのグラフライブラリです。グラフの描画ではなく、グラフ理論のモデルとアルゴリズムの方にフォーカスしています。とても使いやすかったので、紹介してみます。 無向グラフ UndirectedGraph<String, DefaultEdge> g = new SimpleGraph<String, DefaultEdge>( DefaultEdge.class); g.addVertex("a"); g.addVertex("b"); g.addVertex("c"); g.addEdge("a", "b"); g.addEdge("b", "c"); System.out.println(g.vertexSet()); System.out.println(g.edgeSet()); System.out.println(g.edgesOf("c"));

    グラフ理論ライブラリのJGraphTを使ってみた - kaisehのブログ
  • GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)

    GC¥¢¥ë¥´¥ê¥º¥à¾ÜºÙ²òÀâ ÆüËܸì¤Î»ñÎÁ¤¬¤¹¤¯¤Ê¤¤GC¥¢¥ë¥´¥ê¥º¥à¤Ë¤Ä¤¤¤Æ¾ÜºÙ¤Ë²òÀ⤷¤Þ¤¹ ¥È¥Ã¥×¥Ú¡¼¥¸¥Ú¡¼¥¸°ìÍ÷¥á¥ó¥Ð¡¼ÊÔ½¸ GC ºÇ½ª¹¹¿·¡§ author_nari 2010ǯ03·î14Æü(Æü) 20:47:11ÍúÎò Tweet ¤³¤ÎWiki¤¬Ìܻؤ¹½ê GC¤È¤Ï¡© GC¤ò³Ø¤ÖÁ°¤ËÃΤäƤª¤¯»ö ¼Â¹Ô»þ¥á¥â¥ê¹½Â¤ ´ðËÜ¥¢¥ë¥´¥ê¥º¥àÊÔ Reference Counter Mark&Sweep Copying ±þÍÑ¥¢¥ë¥´¥ê¥º¥àÊÔ IncrementalGC À¤ÂåÊÌGC ¥¹¥Ê¥Ã¥×¥·¥ç¥Ã¥È·¿GC LazySweep TwoFinger Lisp2 Pa

    GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)
  • いろいろなソートアルゴリズム

    <body> <p>このページにはフレームが使用されていますが、お使いのブラウザではサポートされていません。</p> </body>

  • Spaghetti Source - 各種アルゴリズムの C++ による実装

    ACM/ICPC(プログラミングコンテスト)系列の問題を解くことを目標にして,各種アルゴリズムを C++ で実装してみた.極めて意地が悪い類の問題には対応していないし,特定の入力に対して高速に動くということもない.計算量も最良とは限らない. これらを参考にする方への注意とお願い: これらの記述は正確とは限りません.参考文献を参照することを強く推奨します.間違っている場合は是非教えてください. これらのプログラムは間違っているかもしれません.各人で検証することを強く推奨します.バグがあれば是非教えてください. 分類が怪しいので,これはこっちだろう,ということがあればコメントを下さると助かります. 注意! 現在書き換え中 TODO 分類を正しく行う. 全体的に説明と使い方を詳しく. Verify していないものを Verify. ボロノイ図(いつになることやら……) 基 テンプレート グラフ

  • 1