1.5. Stochastic Gradient Descent# Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to fitting linear classifiers and regressors under convex loss functions such as (linear) Support Vector Machines and Logistic Regression. Even though SGD has been around in the machine learning community for a long time, it has received a considerable amount of attention just recently in th
As the world’s largest domain registrar with over 20 million customers, GoDaddy manages more than 84 million domains, offering a robust platform with 24/7 customer support and a wide range of TLDs. Its user-friendly interface and comprehensive services, including hosting and website builders, make it ideal for businesses seeking an all-in-one solution. Price 395 USD Auction Type GoDaddy Buy Now Go
OrthogonalMatchingPursuit# class sklearn.linear_model.OrthogonalMatchingPursuit(*, n_nonzero_coefs=None, tol=None, fit_intercept=True, precompute='auto')[source]# Orthogonal Matching Pursuit model (OMP). Read more in the User Guide. Parameters: n_nonzero_coefsint, default=NoneDesired number of non-zero entries in the solution. Ignored if tol is set. When None and tol is also None, this value is ei
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt %matplotlib inline from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from
>>> le = LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) [np.str_('amsterdam'), np.str_('paris'), np.str_('tokyo')] >>> le.transform(["tokyo", "tokyo", "paris"]) array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) [np.str_('tokyo'), np.str_('tokyo'), np.str_('paris')] fit(y)[source]# Fit label encoder. Parameters: yarray-like of sh
Pipeline# class sklearn.pipeline.Pipeline(steps, *, transform_input=None, memory=None, verbose=False)[source]# A sequence of data transformers with an optional final predictor. Pipeline allows you to sequentially apply a list of transformers to preprocess the data and, if desired, conclude the sequence with a final predictor for predictive modeling. Intermediate steps of the pipeline must be trans
RBFSampler# class sklearn.kernel_approximation.RBFSampler(*, gamma=1.0, n_components=100, random_state=None)[source]# Approximate a RBF kernel feature map using random Fourier features. It implements a variant of Random Kitchen Sinks.[1] Read more in the User Guide. Parameters: gamma‘scale’ or float, default=1.0Parameter of RBF kernel: exp(-gamma * x^2). If gamma='scale' is passed then it uses 1 /
ParameterSampler# class sklearn.model_selection.ParameterSampler(param_distributions, n_iter, *, random_state=None)[source]# Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a
KernelPCA# class sklearn.decomposition.KernelPCA(n_components=None, *, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver='auto', tol=0, max_iter=None, iterated_power='auto', remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=None)[source]# Kernel Principal component analysis (KPCA). Non-linear dimensionality reductio
VotingClassifier# class sklearn.ensemble.VotingClassifier(estimators, *, voting='hard', weights=None, n_jobs=None, flatten_transform=True, verbose=False)[source]# Soft Voting/Majority Rule classifier for unfitted estimators. Read more in the User Guide. Parameters: estimatorslist of (str, estimator) tuplesInvoking the fit method on the VotingClassifier will fit clones of those original estimators
PolynomialFeatures# class sklearn.preprocessing.PolynomialFeatures(degree=2, *, interaction_only=False, include_bias=True, order='C')[source]# Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form
PassiveAggressiveRegressor# class sklearn.linear_model.PassiveAggressiveRegressor(*, C=1.0, fit_intercept=True, max_iter=1000, tol=0.001, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, shuffle=True, verbose=0, loss='epsilon_insensitive', epsilon=0.1, random_state=None, warm_start=False, average=False)[source]# Passive Aggressive Regressor. Read more in the User Guide. Parameter
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く