タグ

ベイズに関するp_tanのブックマーク (18)

  • 逐次ベイズフィルタ【カルマンフィルタ、粒子フィルタの基礎】 - HELLO CYBERNETICS

    はじめに 必要なパーツ 予測 観測更新 逐次ベイズフィルタの流れ 前提 流れ 予測の密度関数をどう使うのか 各パーツの式展開 予測の密度関数 更新の密度関数 まとめ はじめに 逐次ベイズフィルタの基的な概要は極めて単純です。しかし非常に強力です。 制御の分野では遥か昔から状態観測器としてカルマンフィルタとして知られる逐次ベイズフィルタが有効活用されてきました。また、数理モデルによる演繹的なシミュレーションと、観測データによる機能的な推測を統合したデータ同化と呼ばれる分野でも、主にパーティクルフィルタが強力なツールとして利用されています。また自己位置推定、SLAMなど近年の自律移動ロボット技術に欠かせない物となっています。 必要なパーツ 逐次ベイズフィルタに必要なパーツは下記の通り、たったの2つです。これらを紹介する前に記法について整理しておきましょう。 時刻 $t$ での状態を $x _

    逐次ベイズフィルタ【カルマンフィルタ、粒子フィルタの基礎】 - HELLO CYBERNETICS
  • ベイズ統計学の概論的紹介

    ベイズ統計学の基礎概念からW理論まで概論的に紹介するスライドです.数理・計算科学チュートリアル実践のチュートリアル資料です.引用しているipynbは * http://nhayashi.main.jp/codes/BayesStatAbstIntro.zip * https://github.com/chijan-nh/BayesStatAbstIntro を参照ください. 以下,エラッタ. * 52 of 80:KL(q||p)≠KL(q||p)ではなくKL(q||p)≠KL(p||q). * 67 of 80:2ν=E[V_n]ではなくE[V_n] → 2ν (n→∞). * 70 of 80:AICの第2項は d/2n ではなく d/n. * 76 of 80:βH(w)ではなくβ log P(X^n|w) + log φ(w). - レプリカ交換MCと異なり、逆温度を尤度にのみ乗す

    ベイズ統計学の概論的紹介
  • Optuna(TPE)のアルゴリズム理解 ー Part 1 ー - Qiita

    2019/2/13 Qiita初投稿です. [追記] 英語ですが,より詳しい説明をarXivにUploadしました. 長くなってしまったので,投稿を分離しました. Part2 Part3 Optunaのアルゴリズムは追ってみたいが,コード長過ぎるよ... という人が参照すべきコード.冗長なコードを簡潔にし,変数名の統一性が取れるようにリファクタリングしました.行数はOptunaと比較してだいぶ減っています. 自作したTPE 注意: 以前に加えた性能向上のための変更により,記事の説明とは異なる多変量のモデルに関する実装コードでかつ突然変異のHeuristicsが入っています. Prefered Networks(PFN)から発表されたOptunaが利用しているモデル(TPE)のコードを読んでみたので自分の持つ知識内でまとめてみました.枝刈の部分については記載していません.OptunaではS

    Optuna(TPE)のアルゴリズム理解 ー Part 1 ー - Qiita
  • ニューラルネットへのベイズ推定 - Bayesian Neural Network - nykergoto’s blog

    ニューラルネットワークの過学習防止としてDropout という機構が用いられているのはご案内のとおりです。 この Dropout 、見方を変えるとディープラーニングにおける重みのベイズ推定に相当しているのではないか、という内容が Uncertainty in Deep Learning にて述べられていて、この記事ではその内容について解説していきたいと思います。 また末尾では実際にベイズ推定を実装して、予測がちゃんと不確実性を盛り込んだものになっているかどうか、を確認します。 基的に記事の内容は元の論文(YARIN GAL さんの博士論文です)と同著者の解説ページを元にしています。それぞれ以下からアクセスできますので、解説じゃなくて自分で読みたい!という方はそちらを参考にしてください。個人的には解説も論文もとても読みやい (なんと数式もとても丁寧に記述されています!!) ので、英語が苦手

    ニューラルネットへのベイズ推定 - Bayesian Neural Network - nykergoto’s blog
  • 機械学習で予測モデルを作る際の概要のオレオレまとめ - HELLO CYBERNETICS

    はじめに 機械学習のモデル 教師あり学習 機械学習における予測モデルの基的な作り方 予測モデルfの考え方 $\phi(x)$の決め方 特徴量エンジニアリング モデル選択 ニューラルネットワーク 複数の予測モデルの活用 アンサンブル ベイズ予測分布 はじめに 機械学習のモデルには数多くのものが存在します。 例えばサポートベクターマシンやニューラルネットワーク、ロジスティック回帰モデルなど、初学者にとってどれが何のために生み出され、 そしてどのような時に有効なのかを把握することは難しいように思います。 そこで今回はある特定のモデルについて細かく見るのではなく、機械学習のモデルが何を表し何を達成しようとしているのかの概観を与え、 それぞれのモデルがどういう時に使えそうなのかの感覚を身につける手がかりのようなものを書いてみたいと思います。 (最初、一般化線形モデルからベイズまでそれなりにしっかり

    機械学習で予測モデルを作る際の概要のオレオレまとめ - HELLO CYBERNETICS
    p_tan
    p_tan 2018/03/07
    予測モデルに対する、とてもわかり易い説明。多分すでに研究されてると思うけど、アンサンブルの重み分布p(w)自体もxに依存するようにp(w|x)にしたら、xに応じて適切なモデルを選択するようになるんだろうな。
  • 深層学習はガウス過程 - 作って遊ぶ機械学習。

    おつかれさまです. 僕はあまり深層学習に関して記事を書くことはないのですが,ちょっと気になった論文があったので紹介します. [1711.00165] Deep Neural Networks as Gaussian Processes 論文はGoogle Brainの研究者らによるもので,NIPS2017 Bayesian Deep Learning WorkshopICLR2018にacceptされています.実は深層学習をガウス過程(Gaussian process)で構築するのはこの論文が初出ではないのですが,論文ではベイズ学習,深層学習,カーネル法を簡略かつ包括的に説明している内容になっているので非常に参考になります. さて,「深層学習はガウス過程」というのはちょっぴり宣伝的なタイトルにし過ぎてしまったのですが,もう少しだけ正確に論文の要点をまとめると次のようになります. 背景 単一

    深層学習はガウス過程 - 作って遊ぶ機械学習。
  • いろいろな主成分分析で機械学習の考え方を学ぶ - HELLO CYBERNETICS

    はじめに いろいろな主成分分析 モチベーション1:圧縮された際の誤差を最小化したい モチベーション2:圧縮先での表現力を高めたい モチベーション3:隠れたデータの発生源を知りたい モチベーション4:観測データに不確定要素があり、そのデータが得られる過程を知りたい モチベーション5:データから潜在変数の次元(あるいは圧縮の次元)まで求めたい 最後に はじめに 今回は主成分分析という機械学習でも非常に基的な手法を用いて、機械学習モデルの見方を学んでいきます。これはどういうことかというと、ある1つのモデルに対しての見方が複数あるということです。ある1つのモデルを調べあげたら他の発展が見られたというケースもありますし、元々独立に発見されたが同じものであったというケースもあります。 主成分分析の場合は「Karhunen-Loeve展開」と呼ばれる場合もあり、信号処理などの分野で独立に発見された手法

    いろいろな主成分分析で機械学習の考え方を学ぶ - HELLO CYBERNETICS
  • データに欠損がある場合の教師あり学習 - 作って遊ぶ機械学習。

    おはようございます. 今回は教師あり学習モデルを題材に,入力データが欠損している場合のベイズ流の対処法を解説します.ベイズモデルというと,たいていの場合は事前分布の設定の仕方云々だとか,過学習を抑制できるだとかに議論が注目されがちですが,個人的には,パラメータや潜在変数を推論することとまったく同じ枠組みで欠損値も同時に推論できることが,実用上非常に便利なベイズの特性だと思っています. データの欠損部分の取扱い データに欠損部分が存在することはよくあります.センサーデータを解析する際は,ネットワークの状況やデバイスの不具合によってデータの一部が欠けた状態で上がってくることがあります.スマホから複数種類のデータを集めるといった状況を考えてみると,例えば加速度センサーの値は継続的に取得できたとしていても,GPSの位置情報はほとんど上がってこないといった場合もあるかと思います.また,何かしらのユー

    データに欠損がある場合の教師あり学習 - 作って遊ぶ機械学習。
  • 変分ベイズを使って変化点検知をしてみる - 作って遊ぶ機械学習。

    おつかれさまです.今回は簡単なメッセージ受信数のデータを使って,変分ベイズによる変化点検知をやってみたいと思います.なお,今回使うデータやモデルは下記のPyMCの入門書を参考にしています*1. Pythonで体験するベイズ推論-PyMCによるMCMC入門-キャメロン-デビッドソン-ピロン このでは推論にMCMCを使っていますが,今回はモデルはそのまま流用し,同じことを実現する変分ベイズによる近似推論を導いてみます. 一般的には変分ベイズの方が計算が高速なので,MCMCの性能に満足できない場合などは変分ベイズは良い代替手法になり得ます.また,今回紹介する例は,過去に紹介した混合モデルを使った例よりも比較的シンプルですので,変分ベイズの入門題材にはちょうど良いんじゃないかと思っています. MCMCによる変化点検知 ・メッセージ受信データ PyMCでは次のような「ある期間で受信したメール数」

    変分ベイズを使って変化点検知をしてみる - 作って遊ぶ機械学習。
  • Osaka.Stan#5で「MCMCサンプルの使い方 ~見る・決める・探す・発生させる~」というタイトルで話しました - StatModeling Memorandum

    先日、以下のイベントで話しました。 『StanとRでベイズ統計モデリング』読書会(Osaka.Stan#5) : ATND 発表資料は以下です。 MCMCサンプルの使い方 ~見る・決める・探す・発生させる~ from Kentaro Matsuura 理論的には事後分布や予測分布の使い方というのが正しいですが、プログラミング言語との相性を考えてMCMCサンプルの使い方というタイトルにしました。自著ではモデリングのやり方の体得にフォーカスしていますが、事後分布や予測分布が得られるメリットについては分野や人によって異なるので詳細は省きました。いつか補おうと思っていたので良い機会でした。 読書会では、小杉先生の発表やLTもめちゃ面白く、東京のStan勉強会では見たことがない盛り上がりを見ました。ネット上でしか知らなかったベイジアンにたくさん会って話すことができてよかったです。調子に乗って3次会ま

    Osaka.Stan#5で「MCMCサンプルの使い方 ~見る・決める・探す・発生させる~」というタイトルで話しました - StatModeling Memorandum
  • ベイズ学習の勉強に参考になる資料 - 作って遊ぶ機械学習。

    おつかれさまです.今回はタイトルの通り,ベイズ学習を勉強する上で参考になる教科書やウェブの資料,論文等を紹介したいと思います. ベイズ学習は確率推論に基づいた機械学習アルゴリズムの構築論です.ベイズ学習を使えば,あらゆる形式のデータに対して,未観測値の予測や隠れた構造を発見するための統一的なアプローチをとることができるため,特に現代の機械学習アルゴリズムを深く理解し使いこなすためには必須の方法論になっています. 1, ベイズ学習の位置づけ まず,データサイエンスにおける他の方法論と,ベイズ学習の位置づけを簡単に俯瞰したいと思います. 僕の知る限り,ベイズ学習は1990年代ごろから登場してきた機械学習の方法論で,既存の学習アルゴリズムを確率モデルによって構築し,学習や予測の計算をすべて確率推論(条件付き分布と周辺分布の計算)で解決してしまおうという試みによってはじまりました.これにより,従来

    ベイズ学習の勉強に参考になる資料 - 作って遊ぶ機械学習。
  • ベイズ推論:いつも何度でも尋ねられること

    このページをご覧頂き、ありがとうございます。 「ベイズと最尤のどちらが正しいのか」と、いつも何度でも尋ねられます。 「事前分布は何が正しいのか」と、いつも何度でも尋ねられます。 ここでは、できるだけ短く、その質問についての返答を述べます。 1.正しい統計的推論は存在しない 統計学が扱う問題では、ほとんどの場合、基礎となる確率がわからないので、 特別な場合を除いて、正しいモデル・正しい事前分布・正しい推論というものは存在しません。 条件が不足したり過剰だったりして答えられない問題のことを【不良設定問題】と いいます。 統計学は不良設定問題を扱う学問です。 この世にあるほとんどの問題は程度の違いこそあれ、みな不良設定です。 まずは「統計学は不良設定問題を扱う学問である」ということを理解しましょう。 基礎となる確率が定められていなければ【正しい統計的推論】は存在しません。 (注) 基礎となる確率

    ベイズ推論:いつも何度でも尋ねられること
  • PowerPoint プレゼンテーション ベイズ推論  東京工業大学 渡辺澄夫 電子情報通信学会ソサイエティ大会 AI-2 データ科学とコンピュータ科学の基礎理論と展開 2016年9月20日 北海道大学

    ベイズ推論 東京工業大学 渡辺澄夫 2016/9/15 1 電子情報通信学会ソサイエティ大会 AI-2 データ科学とコンピュータ科学の基礎理論と展開 2016年9月20日北海道大学 この講演の目的 2 2 統計的推論が命題論理の推論と異なる点を説明し、 ベイズ推論において解明されていることの概略を述べる。 もくじ 3 3 1.統計的推論は命題論理の推論と何が違うのか 2.統計的推論では何を知りたいのか 3.予測誤差と交差検証誤差 4.総和誤差と自由エネルギー 4 4 1.統計的推論は命題論理の推論と何が質的に違うのか なぜ人間は「正しい統計的推論」を求めたのか 5 数学や物理学では一定の水準の厳密さにおいて 「正しい推論」というものが存在している。 → 正しいモデルで正しく推論すれば正しい結論が得られる。 → 間違った結論は間違ったモデルか推論から生まれる。 (例) 連続関数の列が一様収

  • {rBayesianOptimization}パッケージによるベイズ最適化で機械学習パラメータチューニングをお手軽に - 渋谷駅前で働くデータサイエンティストのブログ

    機械学習のパラメータチューニングというと大なり小なり大変な部分があって、今年のエイプリルフール記事に皆さん引っかかって下さったところを見るにパラメータチューニングを簡単に済ませたい!と願う人々は世の中多いようです(笑)。 少し前のMXnetを使った記事でも取り上げましたが、そのパラメータチューニングを迅速に済ませようというアイデアの一つがベイズ最適化(Bayesian Optimization)です。 要は、グリッドサーチのように網羅的に最適なパラメータを探索しに行くのではなく、一つのパラメータで精度をチェックしたらその次は精度が上がりやすそうな方向にベイズ的に逐次改善を行いながら探索していく、という方法のことです。 世の中色々seminar paper的なものがあるようですが、arXivから@enakai00さんが見つけてきて下さったのがこれ。 [1012.2599] A Tutoria

    {rBayesianOptimization}パッケージによるベイズ最適化で機械学習パラメータチューニングをお手軽に - 渋谷駅前で働くデータサイエンティストのブログ
  • 二つの時系列データの間に「差」があるか判断するには - StatModeling Memorandum

    詳しい経緯はこのまとめを参照してください。時間軸でぶった切って各時点で検定を使う手法は、百歩譲って「差があるかどうか」は判定できるかもしれないけど、「どれほど異なるのか」については何も言えない。「どの時刻から異なるか」についても言えるか分からない。そこでベイズ統計モデリングで判断しようと思います。ベイズ統計モデリングでは多くの事前知識を仮定としてモデルに組み込みますが、検定も多くの仮定を前提にしている点は同様と思います。 データは雰囲気だけ似せて自作しました。野生型100個体、変異体10個体で1~24まで1時間ずつ測定して24時点としました。まとめを見ると144時間みたいですが24時間に簡略化します。データの構成は以下です。 typeX1X2…X23X2400.0710.555…-0.236-0.59700.4450.483…-0.1490.23100.2250.764…-0.116-0.

    二つの時系列データの間に「差」があるか判断するには - StatModeling Memorandum
  • 株式会社ALBERT(レコメンドエンジン)

    データ分析から導き出されたインサイト無しにAI人工知能)の活用は始まりません。私たちは、各業界知識とデータ・アナリティクス技術を駆使しデータドリブン経営を強力に支援します。 データ、アナリティクス、AIは企業にとって競合他社との差別化を図るかつてないほど大きな要因になっています。今日の経営幹部が効率を向上しながら新たな収益源を開拓し、新しいビジネスモデルをタイムリーに構築する方法を模索する中、価値を生み出し成長を続ける企業には「データ活用」という共通項があります。私たちは、無数のデータから企業にとって当に必要なデータを活用するための方法を知っています。 将来を見据えたオペレーション体制を備えている企業の半数以上(52%)は、すでにデータとアナリティクスを大規模に活用しています。データとAIに関する取り組みをビジネス戦略に沿って実施することで投資利益率を迅速に最大化し、最終的にはAIをビ

    株式会社ALBERT(レコメンドエンジン)
  • 階層モデルの分散パラメータの事前分布について発表しました - ほくそ笑む

    ひと月ほど前になりますが、基礎からのベイズ統計学入門 輪読会で発表させて頂きました。 タイトルは「階層モデルの分散パラメータの事前分布について」で、Andrew Gelman の論文 Prior distributions for variance parameters in hierarchical models (PDFリンク) の内容をまとめたものです。 ベイズ統計において、パラメータの事前分布に何を使うかというのは重要な問題です。 分散パラメータの事前分布には伝統的に逆ガンマ分布が使われますが、この論文によると半コーシー分布を使いましょうとのことです。 発表資料は SlideShare に上げています。 階層モデルの分散パラメータの事前分布について from hoxo_m ベイズ統計に興味のある方は、5/19 に 基礎からのベイズ統計学入門 輪読会 #5 最終回 が行われますので参

    階層モデルの分散パラメータの事前分布について発表しました - ほくそ笑む
  • ややこしい離散分布に関するまとめ - 作って遊ぶ機械学習。

    今回は離散分布(discrete distribution)の代表格である多項分布(multinomial distribution)や、その共役事前分布であるディリクレ分布(Dirichlet distribution)との関係性や計算方法を整理したいと思います。 離散分布というと、来はポアソン分布(Poisson distribution)なども含めた離散値を出力するような分布全般のこと指します。しかし実際に論文などを読んでいると、くじ引きのように単純に出目の比率が与えられたような分布を離散分布と名付けてしまっている場合もよく見られます。まぁ文脈的に誤解を招くことはあまりないと思うのですが、くじ引きの分布をもっとキッチリ表現するなら、複数あるカテゴリーから1つを抽出するという意味でカテゴリカル分布(categorical distribution)と呼ぶのが適切かと思います。あるいは

  • 1