並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 3714件

新着順 人気順

機械学習の検索結果1 - 40 件 / 3714件

  • 【永久保存版】Gitのあらゆるトラブルが解決する神ノウハウ集を翻訳した - LABOT 機械学習ブログ

    堀田(@YoshiHotta)です。この記事はGithubで3万スター⭐以上を集めた人気リポジトリ git-flight-rules の翻訳です。 Git はエンジニアが毎日何十回も使うコマンドであるにも関わらず、難しいツールです。 コマンドを間違えて、元に戻そうとあれこれ試しているうちにもっと悲惨な状況になり、復旧できなくなった経験が誰でも一度はあるのではないでしょうか。 Git でトラブルに見舞われてもこの Git フライトルールがあれば安心です! このガイドで対処策が必ず見つかります。 落ち着いてガイドの手順に従えばトラブルから脱出できます。 毎日Git を使う仕事を何年もしていますが、今でも困ることがよくあります。そういう時は git flight rules をすぐに参照していました。本家に日本語版がなかったので、仕方がなくずっと母語ではない英語のバージョンを読んでいました。塵も

      【永久保存版】Gitのあらゆるトラブルが解決する神ノウハウ集を翻訳した - LABOT 機械学習ブログ
    • えるエル on Twitter: "東大が無償でPDF公開している,統計学会の75周年記念出版『21世紀の統計科学』の3冊 1と2は実際の統計データを用いて,各事例への統計学の応用手法,3は機械学習の人なら馴染み深い統計計算を解説 下手な市販の本を買うよりは,この3… https://t.co/w2cSVIxmUI"

      東大が無償でPDF公開している,統計学会の75周年記念出版『21世紀の統計科学』の3冊 1と2は実際の統計データを用いて,各事例への統計学の応用手法,3は機械学習の人なら馴染み深い統計計算を解説 下手な市販の本を買うよりは,この3… https://t.co/w2cSVIxmUI

        えるエル on Twitter: "東大が無償でPDF公開している,統計学会の75周年記念出版『21世紀の統計科学』の3冊 1と2は実際の統計データを用いて,各事例への統計学の応用手法,3は機械学習の人なら馴染み深い統計計算を解説 下手な市販の本を買うよりは,この3… https://t.co/w2cSVIxmUI"
      • 機械学習モデルを作成する - Training

        Microsoft Learn では、対話的な方法で、従来の機械学習の概要を理解することができます。 これらのラーニング パスは、ディープ ラーニングのトピックに移行するための優れた基盤にもなり、各自の生産性を向上させます。 最も基本的な従来の機械学習モデルから、探索的データ分析やカスタマイジングのアーキテクチャまで、ブラウザーを離れることなく、概念的内容や対話型の Jupyter Notebook を簡単に把握することができます。 知識と興味に応じて自分のパスを選択してください。 オプション 1: 完全なコース: 機械学習のためのデータ サイエンスの基礎 ほとんどのユーザーには、このパスがお勧めです。 これには、概念の理解を最大限に高めるカスタム フローを備えた、他の 2 つのラーニング パスと同じモジュールがすべて含まれています。 基になる概念と、最も一般的な機械学習ツールでモデルを構

          機械学習モデルを作成する - Training
        • 私の会社の機械学習経験ゼロの「ディープラーニングおじさん」が会社のAI戦略を動かすまで - karaage. [からあげ]

          ディープラーニングおじさん 私の会社には「ディープラーニングおじさん」がいます。「います」といっても私が勝手に一人で心の中でそう呼んでいるだけですが…ともかく、今日はその「ディープラーニングおじさん」が、機械学習経験ゼロから、最終的に会社を動かすまでの華麗なる軌跡を紹介したいと思います。 なお、会社に関する情報は、私の都合である程度、虚実入り混じった情報になることご了承ください。今回の話で伝えたいことに関しては、影響は無い範囲とは思っています。 ディープラーニングおじさんの華麗なる軌跡 自分のツイートを「ディープラーニングおじさん」で検索したら、最初に引っかかったのが2016年10月ころでした。もう1年半くらい前ですね。 自分も個人で少しだけディープラーニング試したりしてるので、ディープラーニングおじさんに少しだけ自分の知ってる情報を提供してみたけど、おじさん何も聞かずに特攻しててワロタw

            私の会社の機械学習経験ゼロの「ディープラーニングおじさん」が会社のAI戦略を動かすまで - karaage. [からあげ]
          • Googleが提供する無料のAI講座受けてみた 1時間で機械学習の基礎がわかる | Ledge.ai

            第5回となる今回は、グーグル合同会社(Google)が提供する、「はじめてのAI」を受けてみました。本講座では、身近なAIの活用事例だけではなく、機械学習、ニューラルネットワーク、ディープラーニング(深層学習)についても学べます。講座時間は約1時間で、前提知識は不要です。 カリキュラムは以下のとおりです。 第1章:はじめに第2章:機械学習でできること第3章:機械学習のしくみ第4章:応用事例の紹介第5章:最後に第6章:最終テストYouTubeより 第1章では、AIが生活の中でどのように使われ、浸透しているのかを学んでいきます。GoogleはこれまでのITシステムよりもう一歩賢いことができるようなAI技術を目指していると話しています。GmailやGoogle フォトなど、GoogleのサービスにおいてAIがどのように使われているのか説明します。 YouTubeより また、農家さんやクリーニング

              Googleが提供する無料のAI講座受けてみた 1時間で機械学習の基礎がわかる | Ledge.ai
            • 君には今から3時間で機械学習Webアプリを作ってもらうよ

              新人: 「本日データサイエンス部に配属になりました森本です!」 先輩: 「お、君が新人の森本さんか。僕が上司の馬庄だ。よろしく!」 新人: 「よろしくお願いします!」 先輩: 「さっそくだけど、練習として簡単なアプリを作ってみようか」 先輩: 「森本くんは Python なら書けるかな?」 新人: 「はい!大学の研究で Python 書いてました!PyTorch でモデル作成もできます!」 先輩: 「ほう、流石だね」 新人: 😊 先輩: 「じゃ、君には今から 3 時間で機械学習 Web アプリを作ってもらうよ」 先輩: 「題材はそうだなぁ、写真に写ってる顔を絵文字で隠すアプリにしよう」 先輩: 「あ、デプロイは不要。ローカルで動けばいいからね。顔認識と画像処理でいけるよね?」 新人: 😐 新人: (えぇぇぇぇぇぇぇ。3 時間?厳しすぎる...) 新人: (まずモデルどうしよう。てかもら

                君には今から3時間で機械学習Webアプリを作ってもらうよ
              • はじめに — 機械学習帳

                import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)

                  はじめに — 機械学習帳
                • やる夫で学ぶ機械学習シリーズ · けんごのお屋敷

                  これは、機械学習に関する基礎知識をまとめたシリーズ記事の目次となる記事です。まとめることで知識を体系化できて自分自身の為にもなるので、こういうアウトプットをすることは大事だと思っています。ただ、普通にブログ記事を書くのも面白くないので、ちょっといつもとは違う方法でやってみようというのが今回のシリーズ記事。 2 ちゃんねるのキャラクターが登場人物として出てきて、彼らが会話して話が進んでいく「やる夫で学ぶシリーズ」という講義調の形式のものがあります。個人的にはやる夫で学ぶシリーズや 数学ガール のような会話形式で話が進んでいく読み物は読みやすいと思っています。さらに、先日みつけた やる夫で学ぶディジタル信号処理 という資料がとてつもなくわかりやすく、これの真似をして書いてみようと思い至りました。記事中のやる夫とやらない夫のアイコンは http://matsucon.net/material/m

                  • 機械学習入門 - 基本のPythonライブラリ、9つを触って学ぶ - エンジニアHub|若手Webエンジニアのキャリアを考える!

                    機械学習入門 - 基本のPythonライブラリ、9つを触って学ぶ 機械学習を学ぶために、まず知っておきたいPythonライブラリを、機械学習エンジニアの「ばんくし」こと河合俊典さんに厳選し、そのエッセンスをつづってもらいました。機械学習入門に向けたスタートアップガイドです! こんにちは。機械学習エンジニアの「ばんくし」こと河合俊典(かわい・しゅんすけ/ @vaaaaanquish )です。 近年の機械学習関連の開発では、多くの場合Pythonが用いられます。 本記事は、「機械学習をこれから初めてみたいけど何から始めればいいか分からない」「基本のキから学びたい」という方に向けて執筆しました。プログラミング言語「Python」の中でも、特に機械学習における使用頻度の高いライブラリを厳選し、その解説を目的としています。 「この記事の内容に沿ってPythonを学習すれば、機械学習エンジニアとして入

                      機械学習入門 - 基本のPythonライブラリ、9つを触って学ぶ - エンジニアHub|若手Webエンジニアのキャリアを考える!
                    • Googleの機械学習のレッスンが無料で受けれて資格が貰える余暇。 | ガジェット通信 GetNews

                      こんにちは。夏休みの最終日に宿題をやる派のひろゆきです。 ネットで暇つぶしにニュースサイトを見てる人も多いと思うんですが、「新しい知識を得る」ってエンタメなんですよね。 ってことで、ネットには無料でいろいろ覚えられるサイトがあったりするんですが、マサチューセッツ工科大学とか、ハーバード大学とかがやってるedXの機械学習のコースとか試してみたんですが、20分ぐらいで飽きちゃったりして、宝箱を開けたりとか別の事はじめちゃうんですよね。 Machine Learning https://www.edx.org/course/machine-learning-columbiax-csmm-102x-4 んで、スタンフォード大学やコロンビア大学が授業を公開してたりするCourseraに、Googleが提供してる機械学習のコースがあるのですね。 ちなみに、二日前から東京大学もコースを提供しはじめてます

                        Googleの機械学習のレッスンが無料で受けれて資格が貰える余暇。 | ガジェット通信 GetNews
                      • Amazon、AWSでのオンライン「機械学習大学」を無料で開講 - ITmedia NEWS

                        コースには開発者向け、データサイエンティスト向け、データプラットフォームエンジニア向け、ビジネスプロフェッショナル向けがあり、各コースに入門編と上級編がある。全部で30件以上、合計で45時間以上のコースで、「Amazon Polly」や「Amazon Recognition」などを含む、機械学習全般を学べる。 関連記事 Apple、女性起業家養成キャンプへの参加者募集開始 Appleが、アプリ開発で起業を目指す女性のための養成キャンプ「Apple Entrepreneur Camp」を立ち上げた。本社キャンパスのテクノロジーラボで2週間、エンジニアや幹部の指導を受けられる。 Alexaスキルで使える音声増やす「Amazon Polly」 日本でも開発者向けにプレビュー版が登場 Amazon.co.jpが「Alexaスキル」の開発者向けに音声変換サービス「Amazon Polly」のプレビュ

                          Amazon、AWSでのオンライン「機械学習大学」を無料で開講 - ITmedia NEWS
                        • Googleが大量の機械学習用データベースを無料公開してた - Qiita

                          個人用メモです。 機械学習は素材集めがとても大変です。 でもこの素材集め、実は無理してやらなくても、元から良質な無料データベースがあったようなのです。 URLはこちら YouTube8-M https://research.google.com/youtube8m/explore.html 提供されているサービスは以下の通り 800万個の動画 19億個のフレーム 4800個の分類 使い方はExploreから画像セットを探し、ダウンロードするだけ。 他の方法も見つけた open images dataset 「すごい神だな」と思ったのは これもう完成されてますよね もちろんこの認識前の画像もセットでダウンロードできます。 Youtube-8Mとは、画像数を取るか、精度で取るか、という違いでしょうか。 他にも良い素材集を教えていただきました (はてなブックマーク情報 @sek_165 さん )

                            Googleが大量の機械学習用データベースを無料公開してた - Qiita
                          • 機械学習が独学できる日本語Youtube難易度別まとめ - Qiita

                            こんにちは。 在宅の機会が増えて以来Youtubeを見る機会が増え、機械学習などが勉強できるチャンネルをいくつか探しては見ていました。探した中でよかったと思ったものをメモしていたのですが、せっかくなので公開したいと思います。日本語のソースがあるもののみ対象にしており、『これ無料でいいのか?』と思ったチャンネルを紹介したいと思います。主観で以下のレベルに分けましたがあくまで参考程度にお願いいたします。 基本:Pythonを触ってみた人 Pythonの説明・動かし方などを解説していて、動画によっては踏み込んだ内容になる 応用:アルゴリズムを使いこなしたい人 「model.fit(X, y)して動かしてみた」よりも踏みこみ、Python自体の説明は少ない 発展:研究開発もしたい人 最新の手法の仕組みの理解などが主眼であり、Pythonの解説はほぼ無い もしおすすめのチャンネルございましたらぜひコ

                              機械学習が独学できる日本語Youtube難易度別まとめ - Qiita
                            • 2021年、企業が無償公開した新人エンジニア向け研修資料 機械学習やゲーム開発、AWS入門、数学などさまざま

                              2021年、企業が無償公開した新人エンジニア向け研修資料 機械学習やゲーム開発、AWS入門、数学などさまざま(1/2 ページ) 2021年も、さまざまな企業が自社の社内研修資料を無償公開したことが話題になった。2021年に無償公開した、企業の社内研修資料を取り上げた記事を紹介する。 2021年、さまざまな企業が自社の社内研修資料を無償公開したことが話題になった。ITmedia NEWSでは主に、新人エンジニア向けに公開した資料などを記事として取り上げたところ、多くの反響が集まった。 学べる内容は、機械学習やIT業界の文化、ゲーム開発、セキュリティ、AWS入門、数学など各社さまざま。100ページ以上のスライドや5時間を超える動画などの資料もあり、新人教育への力の入れ具合も垣間見える。改めて、2021年に企業が無償公開した、社内研修資料を取り上げた記事を紹介する。 セガ、3DCG技術の基礎に役

                                2021年、企業が無償公開した新人エンジニア向け研修資料 機械学習やゲーム開発、AWS入門、数学などさまざま
                              • 東京工業大学、機械学習の講義ノートが無料公開 Pythonの実装も学べる | Ledge.ai

                                本講義では、機械学習の基礎的な概念と理論を紹介し、機械学習の応用に従事するために必要な知識の習得を目指すというもの。機械学習の応用例をコンピュータ・プログラムとして実装するスキルを養成するため、Pythonによる演習も実施する。 「機械学習帳」では、機械学習の理論と実装を一緒に説明することで、理論の実装や応用に触れるだけではなく、プログラムの実行例を通して理論への理解を深められるという。Pythonに加え、NumPy、Matplotlib、scikit-learn、scipy、PyTorchなどのエコシステムとあわせて機械学習の実装を習得できる。 「機械学習帳」より 単回帰、重回帰、ロジスティック回帰、ニューラルネットワーク、サポートベクトルマシン、クラスタリング、主成分分析、確率的勾配降下法、正則化など、機械学習の重要事項を広くカバーした。初学者向けに原理や数学的な取り扱いを丁寧に説明す

                                  東京工業大学、機械学習の講義ノートが無料公開 Pythonの実装も学べる | Ledge.ai
                                • 『機械学習のエッセンス』はゼロからガチで機械学習を生業にしたい人が「いの一番に」読むべき一冊 - 六本木で働くデータサイエンティストのブログ

                                  機械学習のエッセンス -実装しながら学ぶPython,数学,アルゴリズム- (Machine Learning) 作者: 加藤公一出版社/メーカー: SBクリエイティブ発売日: 2018/09/21メディア: 単行本この商品を含むブログを見る発売されてからだいぶ経ちますが、構想段階の頃より著者の「はむかず」さんこと加藤公一さんからお話を伺っていて注目していたこちらの一冊をようやく一通り読みましたので、サクッと書評めいた何かを書いてみようかと思います。 各章の概要 言うまでもなく実際の内容は皆様ご自身でお読みいただきたいのですが、これまでの書評記事同様に概要を簡単にまとめておきます。 第01章 学習を始める前に Python環境やAnacondaのインストールについての説明もなされているんですが、重要なのは後述する「本書は何を含まないか」という節。ここに本書の狙いの全てが書かれていると言って

                                    『機械学習のエッセンス』はゼロからガチで機械学習を生業にしたい人が「いの一番に」読むべき一冊 - 六本木で働くデータサイエンティストのブログ
                                  • さくらインターネット、機械学習やPythonの講座を無償公開 衛星データの活用教える - ITmedia NEWS

                                    さくらインターネットは5月22日、人工衛星が取得したデータを使って機械学習やプログラミングの基礎が学べるeラーニング教材を無償公開すると発表した。在宅によるオンライン学習をサポートしたい考え。 提供するのは、動画で衛星データやプログラミングの基礎知識、データの解析手順などを学べる「Tellus Trainer」と、Pythonを使って簡単な画像処理や衛星画像の加工などを学べる「Tellus×TechAcademy 初心者向け Tellus 学習コース」。衛星データをクラウド上で分析できる同社のサービス「Tellus」の利用を想定している。

                                      さくらインターネット、機械学習やPythonの講座を無償公開 衛星データの活用教える - ITmedia NEWS
                                    • かなえ@Udemy講師 on Twitter: "経産省にも取り上げられている株式会社キカガクの「脱ブラックボックスコース」は、未経験からAI、機械学習について学び始めたい方におすすめです。ディープラーニングの理論とPythonによる実装が一気に学べる一番人気の講座が全編無料で公… https://t.co/bK8GRffKuD"

                                      経産省にも取り上げられている株式会社キカガクの「脱ブラックボックスコース」は、未経験からAI、機械学習について学び始めたい方におすすめです。ディープラーニングの理論とPythonによる実装が一気に学べる一番人気の講座が全編無料で公… https://t.co/bK8GRffKuD

                                        かなえ@Udemy講師 on Twitter: "経産省にも取り上げられている株式会社キカガクの「脱ブラックボックスコース」は、未経験からAI、機械学習について学び始めたい方におすすめです。ディープラーニングの理論とPythonによる実装が一気に学べる一番人気の講座が全編無料で公… https://t.co/bK8GRffKuD"
                                      • 文系大学生が機械学習を0から始めて9か月でKaggle銀メダルを獲得するまで - Qiita

                                        今回自分は0から始めて9か月でコンペで銀メダル(6385分の249位,top4パーセント)を獲得できました。 自分の今までの流れをおさらいしていきます。 それまでの僕のスペック 数3と行列はほぼ何も分からない プログラムはrubyとjavaはそこそこに書ける、pythonは知らん 勉強の流れ 12月末 機械学習を始めると決心、とりあえず何をやればいいかよく分からないがpythonが必要らしいのでprogateでpythonをやってみる 1月 数学が必要らしいので、行列と微分積分について1から学んでみる。今から考えると、行列の基礎をさらえたのは良かったですが、それ以外はこの時間は絶対いらなかったなと考えています。 微分積分 行列 2月 Udemyで多くの講座を受ける、詳細は以下の記事にまとまっています https://qiita.com/HayatoYamaguchi/items/c8051

                                          文系大学生が機械学習を0から始めて9か月でKaggle銀メダルを獲得するまで - Qiita
                                        • Shota Imai@えるエル on Twitter: "コンピュータサイエンスで有名なアルゴリズムのPython実装を大量に公開しているリポジトリ https://t.co/379T4izBle 教養レベルのデータ構造やアルゴリズムから機械学習やブロックチェーン,Web関連などの応用ま… https://t.co/vSmYZW5SHw"

                                          コンピュータサイエンスで有名なアルゴリズムのPython実装を大量に公開しているリポジトリ https://t.co/379T4izBle 教養レベルのデータ構造やアルゴリズムから機械学習やブロックチェーン,Web関連などの応用ま… https://t.co/vSmYZW5SHw

                                            Shota Imai@えるエル on Twitter: "コンピュータサイエンスで有名なアルゴリズムのPython実装を大量に公開しているリポジトリ https://t.co/379T4izBle 教養レベルのデータ構造やアルゴリズムから機械学習やブロックチェーン,Web関連などの応用ま… https://t.co/vSmYZW5SHw"
                                          • Google Colaboratoryを使えば環境構築不要・無料でPythonの機械学習ができて最高 - karaage. [からあげ]

                                            Google Colaboratoryが便利 最近、Google Colaboratoryがちょっと気になっていたのですが、タダケン (id:tadaken3)さんの以下記事に分かりやすく使い方が書いてあったのをきっかけに試して見ました。 結論から言うと、これ良いですね。Google Colaboratoryには以下の特徴(利点)があります。 ローカルPCに必要なのはブラウザ(Google Chrome)のみ クラウド上にPython環境がありPython2/3 両方使える 機械学習に必要なライブラリは、ある程度プリインストールされている(numpy, matplotlib, TensorFlow等) 必要なライブラリは !pip installでインストールできる 日本語フォントも(ちょっと工夫すれば)使える 無料で使える。なんとGPUも12時間分を無料で使える! これ死角無さすぎでは…

                                              Google Colaboratoryを使えば環境構築不要・無料でPythonの機械学習ができて最高 - karaage. [からあげ]
                                            • データサイエンス・機械学習をやるためのエンジニアな本まとめ - 2019年版 - Lean Baseball

                                              ここ1〜2年くらいで、業務やプライベートのデータ分析・データサイエンスで参考にした本(と一部本じゃないもの)をまとめてみました(注:もちろん全部読んでいます).*1. なお, あくまでワタシ個人(@shinyorke)の見解に基づいた独自解釈であり、所属組織・チームの意向とは関係ありません(とだけ最初に断っておきます). サクッとまとめると 「レベル感(はじめて・経験者)」だけででなく,「エンジニア面を鍛える or 理論を固める」の軸で考えると良い書籍・学び方に出会える確率上がる エンジニアでも理論でもどっちから初めても良い, がどちらかが得意な方が絶対幸せ(≒片方だけじゃお話にならない可能性) 個人的なオススメは「機械学習図鑑」「前処理大全」「機械学習のための特徴量エンジニアリング」そして「試して学ぶ機械学習」です. おしながき サクッとまとめると おしながき 対象読者&執筆者について

                                                データサイエンス・機械学習をやるためのエンジニアな本まとめ - 2019年版 - Lean Baseball
                                              • 機械学習システム開発や統計分析を仕事にしたい人にオススメの書籍初級5冊&中級10冊+テーマ別9冊(2019年1月版) - 渋谷駅前で働くデータサイエンティストのブログ

                                                (Image by Pixabay) この記事は以前の書籍リスト記事のアップデートです。 機械学習エンジニアやデータサイエンティストとして(もしくはそうではない職名であったとしても)機械学習システム開発や統計分析を仕事にしたい人なら、最低限これだけは読んでおいて損はないだろうという書籍を初級向け5冊、中級向け10冊選定しています。ただし、以前とは若干異なり「仕事にする」イコール「プロフェッショナルを目指す」ということで、特に初級向けリストを若干レベルアップさせています。中には初学者でも結構読みこなすのが難しい本だけになっているかもしれませんが、中級向けリストに進む上でどうしてもこれだけは読破して欲しいという願望も込めました、ということで。 完全にお馴染みのネタなので特に説明することはないかと思いますが、言うまでもなく以下のリストは完全なる僕個人の独断と偏見で、最近出版されたり自分で読んだ本

                                                  機械学習システム開発や統計分析を仕事にしたい人にオススメの書籍初級5冊&中級10冊+テーマ別9冊(2019年1月版) - 渋谷駅前で働くデータサイエンティストのブログ
                                                • WebサービスのA/Bテストや機械学習でよく使う「確率分布」18種を解説 - paiza開発日誌

                                                  主な確率分布の関連図 こんにちは、吉岡(@yoshiokatsuneo)です。 Webサービスを運営していると、利用状況を分析・予測したり、A/Bテストなどで検証したりすることがよくあります。 データを一個一個見ていてもよくわからないので、データ全体や、その背景の傾向などがまとめて見られると便利ですよね。そんなとき、データの様子を表現するためによく使われているのが「確率分布」です。 学校の試験などで使われる偏差値も、得点を正規分布でモデル化して、点数を変換したものです。 今回は、Webサービスなどでよく使われる確率分布18種類を紹介します。 それぞれ、Webサービスでの利用例やPythonでグラフを書く方法も含めて説明していきます。コードは実際にオンライン実行環境paiza.IOで実行してみることができますので、ぜひ試してみてください。 【目次】 正規分布 対数正規分布 離散一様分布 連続

                                                    WebサービスのA/Bテストや機械学習でよく使う「確率分布」18種を解説 - paiza開発日誌
                                                  • 1. 機械学習概論と単回帰 (1) | 筑波大学オープンコースウェア|TSUKUBA OCW

                                                    計算機による自律的な学習を目指す機械学習や, 大規模情報源からの知識発見を実現するデータマイニングの理論について, 教師付き学習, 教師なし学習を中心に理解する.

                                                      1. 機械学習概論と単回帰 (1) | 筑波大学オープンコースウェア|TSUKUBA OCW
                                                    • 2018年版もっとも参考になった機械学習系記事ベスト10 - Qiita

                                                      こんにちは NewsPicks Advent Calendar 2018の 5日目を担当させていただきます、NewsPicks の戸辺と申します。 2年ほど前に「機械学習をゼロから1ヵ月間勉強し続けた結果」という記事を書き、多くの方に読んでいただきました。そこから引き続き機械学習に携わっており、今年も多くの機械学習系の記事を拝読させていただきました。それら中から「実戦でためになった」「機械学習の勉強に役に立った」という観点から、僕なりのベスト10をあげてみました。 長い冬休み(余談ですが、社会人で一番長く休めるときですよね!?)は知識のアップデートをするのにいい機会だと思いますので、まとめ読みしてみてはいかがでしょうか。 では、スタート! まずは 2018年にみんなが使った Colaboratory 関連から 1位: 【スマホOK/実行しながら学ぶ】東大松尾研のデータサイエンティスト育成/

                                                        2018年版もっとも参考になった機械学習系記事ベスト10 - Qiita
                                                      • 機械学習のパラメータチューニングを「これでもか!」というくらい丁寧に解説 - Qiita

                                                        はじめに 私はこれまで機械学習のパラメータチューニングに関し、様々な書籍やサイトで学習を進めてきました。 しかしどれもテクニックの解説が主体のものが多く、 「なぜチューニングが必要なのか?」 という目的に関する記載が非常に少なかったため、体系的な理解に苦労しました。 この経験を後世に役立てられるよう、「初心者でも体系的に理解できる丁寧さ!」をモットーに記事にまとめたいと思います。 具体的には、 1. パラメータチューニングの目的 2. チューニングの手順とアルゴリズム一覧 3. Pythonでの実装手順 (SVMでの分類を例に) の手順で解説を進めます。 独自解釈も含まれるため、間違っている点等ございましたら指摘頂けると有難いです。 なお、文中のコードはこちらのGitHubにもアップロードしております。 2021/9/6追記:LightGBMのチューニング実行例追加 以下の記事に、Ligh

                                                          機械学習のパラメータチューニングを「これでもか!」というくらい丁寧に解説 - Qiita
                                                        • 人間参加型(human-in-the-loop)機械学習とは?

                                                          This domain may be for sale!

                                                            人間参加型(human-in-the-loop)機械学習とは?
                                                          • 機械学習の勉強を始めて1年以内にkaggleで2位になったので、やったこと全部書く - 趣味日記

                                                            皆さん初めまして! 先日kaggleのARCコンペで2位になったのですが、 2位で終了しました!みなさんお疲れさまでした。コード書くの楽しかった。 pic.twitter.com/dLxl6Mlgoe — Aryyyyy (@aryyyyy13) 2020年5月28日 僕のkaggle歴が浅めということもありtwitterでも結構反響があって、何人かの方にはわざわざDMまで頂いてどんな勉強をしたか聞いていただきました。なるほど需要があるならということで、今までのことをまるっと振り返ってみようと思います。 これからkaggle始める方のためになれば幸いです。 機械学習を始める前のスペック 準備期間:2019年7月〜 kaggle初参加:2019年9月〜 kaggleちゃんと始める:2019年10月〜 DSB参加:2019年10月〜 会社を休職して本格的に勉強開始:2020年1月前半〜 手頃な

                                                              機械学習の勉強を始めて1年以内にkaggleで2位になったので、やったこと全部書く - 趣味日記
                                                            • 12時間でAIや機械学習の基礎を学べる人気講座が無料に | Ledge.ai

                                                              株式会社キカガクは2020年12月24日、AI(人工知能)や機械学習を学び始める人向けに、全編に解説動画が付いた「キカガク流 脱ブラックボックスコース」完全版を無料提供すると発表した。E-learningのプラットフォームであるキカガク上で受講できる。 キカガクが提供する数ある講座のうち、1番人気なのが「キカガク流 脱ブラックボックスコース」という。今回提供する完全版は、世界中でオンラインコースを提供するUdemy上で提供されている初級編(4時間)と中級編(4時間)を2020年版にブラッシュアップし、待望の声が多かった上級編を加えたもの。合計12時間でディープラーニング(深層学習)の基礎が学べるとうたう。 手書きの数学で解説 本コースの特徴は、基礎となる数学と機械学習の結びつきをバランス良く紹介していること。ディープラーニングを含めた機械学習では、微分・線形代数・確率統計の基礎を押さえてお

                                                                12時間でAIや機械学習の基礎を学べる人気講座が無料に | Ledge.ai
                                                              • Googleが大量の機械学習用データベースを無料公開してた - Qiita

                                                                個人用メモです。 機械学習は素材集めがとても大変です。 でもこの素材集め、実は無理してやらなくても、元から良質な無料データベースがあったようなのです。 URLはこちら YouTube8-M https://research.google.com/youtube8m/explore.html 提供されているサービスは以下の通り 800万個の動画 19億個のフレーム 4800個の分類 使い方はExploreから画像セットを探し、ダウンロードするだけ。 他の方法も見つけた open images dataset 「すごい神だな」と思ったのは これもう完成されてますよね もちろんこの認識前の画像もセットでダウンロードできます。 Youtube-8Mとは、画像数を取るか、精度で取るか、という違いでしょうか。 他にも良い素材集を教えていただきました (はてなブックマーク情報 @sek_165 さん )

                                                                  Googleが大量の機械学習用データベースを無料公開してた - Qiita
                                                                • 未経験者から機械学習エンジニアになるために必要な知識と勉強法 - paiza開発日誌

                                                                  Photo by Strelka Institute for Media, Architecture and Design 秋山です。 最近、機械学習の勉強をしている人や、機械学習に関連した研究開発の求人を探す人がすごく増えてきましたね。弊社のエンジニアにも機械学習を勉強中の人達が何人かいます。 ただ、「機械学習を勉強したいけど、難しすぎて何から手を付けたらいいのかよくわからない」という人も多いです。それなりに開発経験のあるエンジニアでもそうなので、経験の浅い人だと、なおさらかと思います。 機械学習と一言で言っても、実践するのに必要な知識の分野は多岐に渡ります。 そこで今回は、未経験者が機械学習エンジニアとして転職するにはどういった知識や勉強が必要なのかを書いていきます。 ■最低限必要な知識 ◆プログラミングスキルとライブラリを使える知識 Pythonには、Tensorflowやsciki

                                                                    未経験者から機械学習エンジニアになるために必要な知識と勉強法 - paiza開発日誌
                                                                  • 「女性エンジニア少ない問題」を解決するために、機械学習で男性エンジニアを女性に変換する

                                                                    2018年4月21日、株式会社サイバーエージェントが主催するイベント「Battle Conference U30」が開催されました。30歳以下のエンジニアによる30歳以下のエンジニアのための技術カンファレンスである本イベントには、さまざまな領域で活躍する若手が登壇。企業の枠を超えて、自身の技術・事業・キャリアに関する知見を発表しました。「機械学習ブームの裏側に」に登壇したのは、ヤフー株式会社データプラットフォーム本部の池上哲矢氏。「女性エンジニアが少ない」という問題に対して、機械学習を用いて解決を試みた、ユニークな取り組みを紹介します。 「連続最適化」を研究し、ヤフーへ 池上哲矢氏(以下、池上):ご紹介に預かりました、ヤフー株式会社の池上哲矢と申します。 今日は「機械学習ブームの裏側に」というタイトルで、発表させていただきたいと思います。こういったイベントは初めてで、すごく緊張しているんで

                                                                      「女性エンジニア少ない問題」を解決するために、機械学習で男性エンジニアを女性に変換する
                                                                    • 統計・機械学習の理論を学ぶ手順 - Qiita

                                                                      社内向けに公開している記事「統計・機械学習の理論を学ぶ手順」の一部を公開します。中学数学がわからない状態からスタートして理論に触れるにはどう進めばいいのかを簡潔に書きました。僕が一緒に仕事をしやすい人を作るためのものなので、異論は多くあると思いますがあくまでも一例ですし、社員に強制するものではありません。あと項目の順番は説明のため便宜上こうなっているだけで、必ずしも上から下へ進めというわけでもありません。 (追記)これもあるといいのではないかというお声のあった書籍をいくつか追加しました。 数学 残念ながら、統計モデルを正しく用いようと思うと数学を避けることはできません。ニューラルネットワークのような表現力が高くて色々と勝手にやってくれるような統計モデルでも、何も知らずに使うのは危険です。必ず数学は学んでおきましょう。理想を言えば微分トポロジーや関数解析のような高度な理論を知っておくのがベス

                                                                        統計・機械学習の理論を学ぶ手順 - Qiita
                                                                      • 機械学習システムの設計パターンを公開します。

                                                                        メルカリで写真検索とEdge AIチームに所属している澁井(しぶい)です。機械学習のモデルを本番サービスに組み込むための設計やワークフローをパターンにして公開しました。 GithubでOSSとして公開しているので、興味ある方はぜひご笑覧ください! PRやIssueも受け付けています。私の作ったパターン以外にも、有用なパターンやアンチパターンがあれば共有してみてください! GitHub:https://github.com/mercari/ml-system-design-pattern GitHub Pages:https://mercari.github.io/ml-system-design-pattern/README_ja.html なぜ機械学習システムのデザインパターンが必要なのか 機械学習モデルが価値を発揮するためには本番サービスや社内システムで利用される必要があります。そのた

                                                                          機械学習システムの設計パターンを公開します。
                                                                        • [速報]「Amazon CodeGuru」発表。機械学習したコンピュータが自動でコードレビュー、問題あるコードや実行の遅い部分などを指摘。AWS re:Invent 2019

                                                                          Amazon Web Services(AWS)は、米ラスベガスで開催中の年次イベント「AWS re:Invent 2019」の基調講演で、機械学習を用いて自動的にコンピュータがコードレビューをしてくれる「Amazon CodeGuru」を発表しました。 Amazon CodeGuruのコードレビュー機能は、Amazon自身のこれまでの大量のコードと、GitHubで公開されているポピュラーな1万のオープンソースソフトウェアのコードを基に機械学習のトレーニングを行ったモデルを用いて、対象となるコードを解析。 GitHubやCodeCommitのプルリクエストと連係し、問題があるとされた個所には人間に読める形式でコメントをしてくれるというもの。 並列処理や脆弱性の問題あるコードを指摘 例えばAWSにおけるベストプラクティスのコードから外れているものや、並列処理における問題などの指摘。

                                                                            [速報]「Amazon CodeGuru」発表。機械学習したコンピュータが自動でコードレビュー、問題あるコードや実行の遅い部分などを指摘。AWS re:Invent 2019
                                                                          • 機械学習で使用する手法を全公開 - Qiita

                                                                            株式会社デジサク がお送りするプログラミング記事、 今回はAI(機械学習)について扱っていこうと思います。 ※ 無料セミナーも開催中なので、ぜひご覧になってみて下さい。 はじめに kaggleや学習サイトなど誰でも機械学習を学べる機会が増えてきました。 その反面、情報量が多すぎて全体感を掴めていない人が多いと感じています。 そこで、様々な参考書や記事で紹介されている機械学習で使用する手法を全公開しようと思います。 細かなコーディングはリンクを貼っておくので、そちらを参照されてください。 SNS でも色々な情報を発信しているので、記事を読んで良いなと感じて頂けたら Twitterアカウント「Saku731」 もフォロー頂けると嬉しいです。 機械学習の一連手順 まず、機械学習を習得するために必要なスキルは下記です。 実務の場では数段細かな作業が必要になりますが、最初は下記を勉強するだけで十分で

                                                                              機械学習で使用する手法を全公開 - Qiita
                                                                            • 機械学習をやる上で必要な数学とは、どの分野のどのレベルの話なのか(数学が大の苦手な人間バージョン) - 渋谷駅前で働くデータサイエンティストのブログ

                                                                              しばらく前にこんな記事が出ていたのをお見かけしました。 明らかにこれは僕が某所(笑)で適当に放言したことがきっかけで巻き起こった議論の一旦なのではないかと思うのですが、個人的にはこちらの@yohei_kikutaさんの仰る通りで大体良いのではないかと考えております。 なのですが、言い出しっぺらしき身としてはもうちょっと何か具体的な話を書いた方が良いのかな?とも思いましたので、常々公言しているように数学が大の苦手な身ながらどの分野のどのレベルの数学が機械学習をやっていく上で必要なのかという点について戯言だらけの駄文を書いてみることにします。 深層学習 (機械学習プロフェッショナルシリーズ) 作者: 岡谷貴之出版社/メーカー: 講談社発売日: 2015/04/08メディア: 単行本(ソフトカバー)この商品を含むブログ (13件) を見るちなみに、以下に並べる戯言は深層学習青本から得られた知識を

                                                                                機械学習をやる上で必要な数学とは、どの分野のどのレベルの話なのか(数学が大の苦手な人間バージョン) - 渋谷駅前で働くデータサイエンティストのブログ
                                                                              • 営業マンが1年でSEになって機械学習エンジニアに転職する話 - かえるのプログラミングブログ

                                                                                こんばんは、かえるるる(@kaeru_nantoka)です。 先日、10ヶ月勤めたSES企業に辞意を伝えました。 そして4月からは、ストックマーク株式会社(https://stockmark.ai/ )にて、NLPを応用した機械学習エンジンを開発する機械学習エンジニアとして参画することになりました。 ちょうどいい人生の節目なので、流行っている転(退)職エントリを描いてみようと思います。 概要 ・営業職だけど趣味で始めたプログラミングにハマったよ ・未経験だけど第二新卒的なアレでプログラマーになるぞ ・ひょんなことから kaggle にハマったぞ ・なんか上京することになったよ ・なんで私がエクセル職人に!? ・なんとかソロ銅メダル取れたぞ ・kaggle 強くなりたいからもう一度転職するぞ! 筆者のスペック ・経済学部卒 ・プログラミング歴1年ちょい(2017年12月~) ・kaggle(

                                                                                  営業マンが1年でSEになって機械学習エンジニアに転職する話 - かえるのプログラミングブログ
                                                                                • 【保存版・初心者向け】僕が本気でオススメするPythonと機械学習の良書12選

                                                                                  ※実際記事で紹介する書籍は12冊ですが、メンバーが借りてオフィスになかったため、上記画像内に3冊ないものがあります。 はじめに AI Academyを開発・運営しています、株式会社エーアイアカデミー代表の谷です。 6ヶ月ほど前に書いた下記記事は約1200のいいねと7万viewsを超える記事になりました。 【保存版・初心者向け】独学でAIエンジニアになりたい人向けのオススメの勉強方法 お読み頂いた方々、またいいねして頂いた方々ありがとうございました! あれから6ヶ月ほど経ちまして、さらにPythonや機械学習の書籍が増えて参りましたので、改めて初心者向けにPythonと機械学習の良書12選を紹介し、初学者が独学でも機械学習プログラミングの基礎スキルUPに貢献できたらと思います。 また、AIプログラミングを作りながら学べるプログラミング学習サービスAI Academyを無料でご利用頂けますので

                                                                                    【保存版・初心者向け】僕が本気でオススメするPythonと機械学習の良書12選