並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 295件

新着順 人気順

for index value in list pythonの検索結果1 - 40 件 / 295件

  • Command Line Interface Guidelines

    Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

      Command Line Interface Guidelines
    • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

      いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

        日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
      • Bulk insertでも20時間以上かかっていたMySQLへのインサート処理を1時間以内にする - エムスリーテックブログ

        この記事はエムスリー Advent Calendar 2022の30日目の記事です。 前日は id:kijuky による チームメンバーのGoogleカレンダーの休暇予定一覧をスプレッドシート+GASで作った でした。 AI・機械学習チームの北川(@kitagry)です。 今回はMySQLへのインサートを20倍以上高速化した話について書きます。 仕事をちゃんとしてるか見張る猫 TL; DR はじめに 今回のテーブル バイナリログを無効化する 追試 LOAD DATA INFILE 追試 テーブルの正規化 インデックスを一時的に剥がす まとめ We are hiring!! TL; DR バイナリログをオフにする LOAD DATA INFILEを使う インデックスを一時的に消す はじめに AI・機械学習チームではサイトトップからアプリに至るまで多くの推薦システムがあります。 そこでは推薦ロ

          Bulk insertでも20時間以上かかっていたMySQLへのインサート処理を1時間以内にする - エムスリーテックブログ
        • Ubuntu 24.04 LTS サーバ構築手順書

          0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

            Ubuntu 24.04 LTS サーバ構築手順書
          • とほほのHaskell入門 - とほほのWWW入門

            概要 Haskellとは 関数型言語 純粋関数型言語 インストール Haskell Stack Hello world 基本 予約語 コメント ブロック レイアウト 入出力 型 変数 数値 文字(Char) 文字列(String) エスケープシーケンス リスト([...]) タプル((...)) 演算子 関数 演算子定義 再帰関数 ラムダ式 パターンマッチ ガード条件 関数合成(.) 引数補足(@) 制御構文 do文 let文 if文 case文 where文 import文 ループ データ型 データ型(列挙型) データ型(タプル型) データ型(直和型) 新型定義 (newtype) 型シノニム (type) 型クラス (class) メイビー(Maybe) ファンクタ(Functor) アプリケイティブ(Applicative) モナド(Monad) モジュール (module) 高階関

            • 【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口

              サーバーレスアプリケーション開発ガイド Lambda関数を用いたサーバーレス開発をもっと知っておこうと思って読んだ本の感想です。2018年4月刊行、サーバーレスの主要サービス解説にコードはPython、のみならずフロントはVue.jsを使った本格開発まで、実践的な内容が詰まった本です。 作者は現Amazon Web Services Japan所属のKeisuke69こと西谷圭介さん。Twitterでもよくお見掛けします。(@Keisuke69) サーバーレスアプリケーション開発ガイド Chapter1 サーバーレスアプリケーションの概要 1-1 サーバーレスアプリケーションとは 1-2 ユースケースとアーキテクチャパターン 1-3 サーバーレスアプリケーションのライフサイクル管理 Chapter2 Amazon Web Services(AWS)利用の準備 Chapter3 インフラを自

                【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口
              • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

                FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

                  FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
                • 再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記

                  数日前にTwitterで, JavaScriptのオブジェクトに対する===の挙動が初心者には難しいみたいな話を見かけた. 発端や周辺の議論をちゃんと追いかけてないからとくに出典は貼らない. たぶん元々の話は「へぇ, こういう挙動なんだ, 簡単ではないね」くらいの話だったのかもしれない. 自分のタイムラインの観測範囲では「そうだそうだ, (参照の同一性ではなく)同値性にしとけばいいのに」と思っている人もそれなりにいそうに見えた. 個人的にも同値性が簡単に確認できるとよい気はするものの, 「なんでそうしないんだ, オブジェクトの中身を確認していくだけだろ!」みたいな簡単な話ではないことも知っているため, 以下のようなツイートをしたのだった. JavaScriptのオブジェクトの同値性、再帰的な構造とか作るとぜんぜん自明じゃないんだよなぁ。リンクの構造は違うけどプロパティを辿ったときのパスはど

                    再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記
                  • Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog

                    はじめに はじめまして。Analyticsチームの清水です。 2024年12月に入社しまして、約4ヶ月が経過しました。今回が初めてのテックブログになります。 ▼先日、入社エントリも公開しました。 本稿のテーマは、自由記述のテキストをラベリングして分類する分析タスクに対し、Geminiと共に取り組んで分かったことの共有です。 私は生成AIをそれほどたくさん使った経験があるわけではないので、これが最良の使い方というわけではないと思いますが、どのようにプロンプトを組み立て、どう効率的に分析を進められたのかを可能な限りリアルに書いていきます。 ※今回利用したモデルは、Gemini 2.5 Proです。 はじめに Geminiを活用したデータ分析の進め方 フェーズ0: アプローチの模索 - Notebook LMや教師なし学習の試行 フェーズ1: データ理解とラベルチェック - コード生成と探索的分

                      Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog
                    • LangChainを使わない - ABEJA Tech Blog

                      TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                        LangChainを使わない - ABEJA Tech Blog
                      • みんなのためのLLMアプリケーション開発環境の構築事例

                        はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                          みんなのためのLLMアプリケーション開発環境の構築事例
                        • Why, after 6 years, I’m over GraphQL

                          GraphQL is an incredible piece of technology that has captured a lot of mindshare since I first started slinging it in production in 2018. You won’t have to look far back on this (rather inactive) blog to see I have previously championed this technology. After building many a React SPA on top of a hodge podge of untyped JSON REST APIs, I found GraphQL a breath of fresh air. I was truly a GraphQL h

                          • Content-Disposition の filename という地雷。 (1個の観点で17個の脆弱性を見つけた話) - ぶるーたるごぶりん

                            English ver: https://gist.github.com/motoyasu-saburi/1b19ef18e96776fe90ba1b9f910fa714#file-lack_escape_content-disposition_filename-md TL;DR 1つのブラウザ、1つのプログラミング言語、15個の { Web Framework, HTTP Client ライブラリ, Email ライブラリ / Web Service 等} で脆弱性を見つけました。 見つけた脆弱性は、全て 1つの観点で発見した (多分 50-80 くらいのプロダクトの調査をした)。 RFC の記載では、(かなりわかりにくく)この問題に対する要件が記載されており、WHATWG > HTML Spec の方はしっかりと書かれているといった状況にある。 この問題は、 Content-Dispo

                              Content-Disposition の filename という地雷。 (1個の観点で17個の脆弱性を見つけた話) - ぶるーたるごぶりん
                            • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

                              1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

                                大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
                              • MySQL のインデクスが利用されないクエリ等を自動検出する ExplainPolice の運用について

                                LINE株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。 LINEヤフー Tech Blog LINE 株式会社 B2B Platform 開発担当フェローの Matsuno です。 LINE の Business Platform ではメインのデータベースとして MySQL を利用しています。MySQL は非常に高速に動く OSS の RDBMS なので、とても便利に利用させていただいております。 MySQL はとても高速なのですが、うっかり index を使わないクエリを発行した場合に実行がとても遅くなってしまうことがあります。LINE の Business Platform はとても多くのお客様が利用されるので、B2B としては異例なほどトラフィックが多く、少し遅いクエリが発生した結果としてサイト全体がダウンして

                                  MySQL のインデクスが利用されないクエリ等を自動検出する ExplainPolice の運用について
                                • Rustで実装するmalloc - NTT docomo Business Engineers' Blog

                                  この記事は、NTT Communications Advent Calendar 2021 21日目の記事です。 はじめに こんにちは、イノベーションセンターの鈴ヶ嶺(@suzu_3_14159265)です。普段は、クラウド・ハイブリッドクラウド・エッジデバイスなどを利用したAI/MLシステムに関する業務に従事しています。本日は、Rustで動的メモリ確保(dynamic memory allocation)のmallocを実装してPythonやvimを動かしてみようという内容をお届けします。 また、去年もRustネタのアドベントカレンダーを書いているのでぜひ見ていただけると嬉しいです! NTTコミュニケーションズ Advent Calendar 2020 Rustで実装するNetflow Collector 実装するmallocのアルゴリズム 今回実装するmallocのアルゴリズムは小さな

                                    Rustで実装するmalloc - NTT docomo Business Engineers' Blog
                                  • 次世代のワークフロー管理ツールPrefectでMLワークフローを構築する CyberAgent Developers Blog | サイバーエージェント デベロッパーズブログ

                                    ※ DynalystではAWSを全面的に採用しているため、AirflowもManaged版を調査しています。 導入後の状態 Prefect導入後は、以下の構成となりました。 ポイントは以下の点です。 ワークフローをDocker Image化することで、開発・本番環境の差を軽減 staging・productionはECS Taskとしてワークフローを実行、開発ではローカルPC上でコンテナ実行 ML基盤のGitHubレポジトリへのマージで、最新ワークフローが管理画面であるPrefect Cloudへデプロイ 従来のyamlベースのdigdagから、DSに馴染み深いPythonベースのPrefectに移行したことで、コード量が減り開発負荷が軽減しました。 Prefect 入門 ~ 基礎 ~ 注意: 本記事ではPrefect 1系を扱います。Prefect 2系が2022年7月にリリースされてい

                                      次世代のワークフロー管理ツールPrefectでMLワークフローを構築する CyberAgent Developers Blog | サイバーエージェント デベロッパーズブログ
                                    • Qwen3 の概要|npaka

                                      以下の記事が面白かったので、簡単にまとめました。 ・Qwen3: Think Deeper, Act Faster 1. Qwen3本日 (2025年4月28日) 、「Qwen3」をリリースしました。「Qwen3-235B-A22B」は、「DeepSeek-R1」「o1」「o3-mini」「Grok-3」「Gemini-2.5-Pro」などの他のトップティアモデルと比較して、コーディング、数学、一般的な機能などのベンチマーク評価で競争力のある結果を達成しています。さらに、小型のMoEである「Qwen3-30B-A3B」は、10倍のアクティブパラメータを持つ「QwQ-32B」を凌駕し、「Qwen3-4B」のような小さなモデルでさえ、「Qwen2.5-72B-Instruct」の性能に匹敵します。 2つのMoEモデルをオープンウェイト化しています。「Qwen3-235B-A22B」は、総パラメ

                                        Qwen3 の概要|npaka
                                      • Introducing Amazon S3 Vectors: First cloud storage with native vector support at scale (preview) | Amazon Web Services

                                        AWS News Blog Introducing Amazon S3 Vectors: First cloud storage with native vector support at scale (preview) Today, we’re announcing the preview of Amazon S3 Vectors, a purpose-built durable vector storage solution that can reduce the total cost of uploading, storing, and querying vectors by up to 90 percent. Amazon S3 Vectors is the first cloud object store with native support to store large ve

                                          Introducing Amazon S3 Vectors: First cloud storage with native vector support at scale (preview) | Amazon Web Services
                                        • REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js

                                          By Jean-Marc Möckel I've created and consumed many API's over the past few years. During that time, I've come across good and bad practices and have experienced nasty situations when consuming and building API's. But there also have been great moments. There are helpful articles online which present many best practices, but many of them lack some practicality in my opinion. Knowing the theory with

                                            REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js
                                          • プロと読み解くRuby 3.4 NEWS - STORES Product Blog

                                            プロと読み解くRuby 3.4 NEWS テクノロジー部門技術基盤グループの笹田(ko1)と遠藤(mame)です。Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、恒例のクリスマスリリースとして、Ruby 3.4.0 がリリースされました(Ruby 3.4.0 リリース )。今年も STORES Product Blog にて Ruby 3.4 の NEWS.md ファイルの解説をします(ちなみに、STORES Advent Calendar 2024 の記事になります。他も読んでね)。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者

                                              プロと読み解くRuby 3.4 NEWS - STORES Product Blog
                                            • The Prompt Engineering Playbook for Programmers

                                              Developers are increasingly relying on AI coding assistants to accelerate our daily workflows. These tools can autocomplete functions, suggest bug fixes, and even generate entire modules or MVPs. Yet, as many of us have learned, the quality of the AI’s output depends largely on the quality of the prompt you provide. In other words, prompt engineering has become an essential skill. A poorly phrased

                                                The Prompt Engineering Playbook for Programmers
                                              • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

                                                Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                                                  GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
                                                • GiNZAと患者表現辞書を使って患者テキストの表記ゆれを吸収した意味構造検索を試した - エムスリーテックブログ

                                                  エムスリーエンジニアリンググループ AI・機械学習チームの中村(@po3rin) です。 好きな言語はGo。仕事では主に検索周りを担当しています。 最近「医療言語処理」という本を読んで、医療用語の表記ゆれ吸収や意味構造検索などについて学びました。 医療言語処理 (自然言語処理シリーズ) 作者:荒牧 英治発売日: 2017/08/01メディア: 単行本 そこで今回はElasticsearchと患者表現辞書を使った意味構造検索がどのくらい実戦投入できるかを簡単に試したので、概要と実装方法を簡単にご紹介します。 患者テキストの表記ゆれ 患者テキストの表記ゆれとは MEDNLPの患者表現辞書 トークンによる検索の課題と対策の検討 主語が違うのにヒットしちゃう? 意味構造検索 係り受け解析と患者表現辞書を使った意味構造検索の実装 患者表現辞書を使った係り受け解析 患者表現辞書の表現をクエリに展開する

                                                    GiNZAと患者表現辞書を使って患者テキストの表記ゆれを吸収した意味構造検索を試した - エムスリーテックブログ
                                                  • MCP Python SDK のドキュメント|npaka

                                                    以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

                                                      MCP Python SDK のドキュメント|npaka
                                                    • GPT in 60 Lines of NumPy | Jay Mody

                                                      January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                                                      • BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita

                                                        このようなゲームを作りました。基本的には迷路のゲームです。 サイトのリンク 本記事ではこのゲームの製作過程を掲載すると共に、きっと有益にな情報をまとめます。楽しんで頂けたら幸いです。 Step0 前提 まず用語を整理します。 Blender : 3DCG制作ソフト。Pythonによって操作が可能になっています。 Python : 言わずと知れた有名プログラミング言語。 Unity : ゲーム制作ソフト。スタート画面の表示やゲームオーバーの判定などをしてくれます。言語はC#です。 大まかな流れとしては、 Step1. Blenderで3Dオブジェクトを作成 Step2. Pythonでそれを迷路に組み立てる Step3. Unityでゲームとして完成させる という風になっています。 コードに関しては、読みやすさも考え記事中においては一部抜粋に留めています。もし全体のコードを知りたい場合はプル

                                                          BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita
                                                        • データカタログにNotionを選択した理由

                                                          実装方法 冪等性を担保したGoogle Cloud Composerの設計と実装で紹介しているとおり、Luupのデータ基盤はGoogle Cloud Composerを軸に動いています。なので今回も、Google Cloud Composerの環境下に作りました。 アウトプットイメージは以下です。 以下のNotion APIのDocumentを参考に実装を進めていきます。 サンプルコードも豊富で、説明も丁寧なので簡単に実装できました。 以下、コード一例です。 # Notionのフォーマットに変換するメソッド def format_standard_property_value(self, property_name: str, value: str): if property_name == "title": return {"title": [{"text": {"content": v

                                                            データカタログにNotionを選択した理由
                                                          • yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳

                                                            youtube-dlの開発が止まっておりfork版のyt-dlpに移る事にした。yt-dlpはyoutube-dlのforkであるyoutube-dlcのそのまたforkになる。オリジナルであるyoutube-dlのオプション解説はyoutube-dl オプション一覧及びそのメモ。 2022/06/19更新 2022/09/06更新 OPTIONS -h, --helpヘルプを表示する。 --versionプログラムのVerを表示する。 -U, --update --no-update (default)プログラムのupdateを実行するかどうか。 -i, --ignore-errorsダウンロードエラーを無視する。プレイリストごとダウンロードするような時に使う。エラーで失敗してもダウンロードは成功したとみなされる。 --no-abort-on-error (default) --abor

                                                              yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳
                                                            • Raspberry PiとAWSを利用して子どもたちのゲーム時間を可視化してみた | DevelopersIO

                                                              DynamoDBの作成 さっそくテーブルをCDKで構築してみます。 from aws_cdk import ( Stack, RemovalPolicy, aws_dynamodb as dynamodb, # DynamoDBのライブラリをimport ) from constructs import Construct class GameCounterStack(Stack): def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) # The code that defines your stack goes here # ここから下に追記していきます。 # DynamoDB ログデータ格納用

                                                                Raspberry PiとAWSを利用して子どもたちのゲーム時間を可視化してみた | DevelopersIO
                                                              • 【機械学習】機械学習を用いたin silico screening【AI創薬】~第2/5章 スクレイピングによる公共データベース(PDB)からの機械学習データを収集~ - LabCode

                                                                AI創薬とは? AI創薬は、人工知能(AI)技術を利用して新しい薬物を発見、開発するプロセスです。AIは大量のデータを高速に処理し、薬物の候補を予測したり、薬物相互作用を評価したりします。また、AIは薬物の効果や安全性をシミュレートすることも可能で、臨床試験の前の段階でリスクを評価することができます。これにより、薬物開発のコストと時間を大幅に削減することが期待されています。AI創薬は、薬物開発の新しいパラダイムとして注目を集め、製薬企業や研究機関で積極的に研究、導入が進められています。また、バイオインフォマティクス、ケモインフォマティクス、機械学習、ディープラーニングなどの技術が組み合わされ、薬物開発のプロセスを革新しています。さらに、AI創薬は個人化医療の推進にも寄与し、患者にとって最適な治療法を提供する可能性を秘めています。 今回はAI創薬の中でも、in silico screeeni

                                                                • Writing a C compiler in 500 lines of Python

                                                                  A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

                                                                  • CloudFormation 一撃で EC2 の Blue/Green Deployment の CodePipeline を構築する | DevelopersIO

                                                                    準備 CodeCommitに以下をプッシュします。 なお、CodePipelineによる自動デプロイではファイル上書きデプロイを設定できないので、必要に応じて appspec.ymlで元のファイルを削除するように対応します。 ソースコード(index.html, hello.conf) appspec.yml (本稿では beforeInstall.sh を利用) ちなみに、index.html や hello.conf の素材は こちら を使っています。 参考 ## appspec.yml version: 0.0 os: linux files: - source: ./hello.conf destination: /etc/nginx/conf.d/ - source: ./index.html destination: /usr/share/nginx/html/ hooks:

                                                                      CloudFormation 一撃で EC2 の Blue/Green Deployment の CodePipeline を構築する | DevelopersIO
                                                                    • A search engine in 80 lines of Python

                                                                      February 05, 2024 · 9 mins · 1675 words Share on: X · HN Discussion on HackerNews. Last September I hopped on board with Wallapop as a Search Data Scientist and since then part of my work has been working with Solr, an open-source search engine based on Lucene. I’ve got the basics of how a search engine works, but I had this itch to understand it even better. So, I rolled up my sleeves and decided

                                                                      • Flutterアプリの定期リリースを支える自動化 - Fast DOCTOR Technologies TECH BLOG

                                                                        本稿では、ファストドクターのモバイルアプリのリリースフローを整備した取り組みについてご紹介します。 モチベーション ファストドクターのモバイルアプリは、2022年夏にFlutterでのフルリプレースを実施し、それ以降は機能の開発が完了次第随時リリースをするという戦略を取っていました。 この戦略はシンプルであり、開発に関わっているステークホルダーが少ない状況下でうまく機能していました。しかし、組織の拡大に伴い以下のような問題が発生するようになりました。 複数機能の開発スケジュールの調整をしたり、バックエンドのリリース・QAとの整合性を取ったりという必要性が増し、調整コストが肥大化 リリースが不定期なため、いつPull Requestをマージすれば良いか分からずopenされたままのPull Requestが多数 この状況を改善するために、以下の要件を念頭に定期的なリリースとそれを支える仕組みを

                                                                          Flutterアプリの定期リリースを支える自動化 - Fast DOCTOR Technologies TECH BLOG
                                                                        • Python standard library changes in recent years

                                                                          With each major Python release, all the attention goes to the new language features: the walrus operator, dictionary merging, pattern matching. There is also a lot of writing about asyncio and typing modules — they are developing rapidly and are obviously important for the core team. The rest of the standard library modules receive undeservedly little attention. I want to fix this and tell you abo

                                                                            Python standard library changes in recent years
                                                                          • ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ

                                                                            Overview エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。検索とGoが好きです。 エムスリーではChatGPTの可能性にいち早く注目して活用を検討している段階ですが、本格的なデータ投入にはまだ懸念もあり、セキュリティチームと検討を進めている段階です。 そんな中で個人または組織のドキュメントのセマンティック検索と取得を可能にするChatGPTプラグイン「ChatGPT Retrieval Plugin」が登場しました。 github.com 情報検索好きとしては黙っていられず、外部公開用のエムスリーAI・機械学習チームのメンバー紹介ドキュメントを使ってローカルで試してみました。 # 用意したドキュメント 中村弘武は東京都在住で、エムスリーという企業で働いでいます。 エムスリーの検索基盤を主に担当しています。また、書

                                                                              ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ
                                                                            • Claude Code SDKでClaude Code Webを作ってみる - エムスリーテックブログ

                                                                              エンジニアリンググループ ゼネラルマネージャーの横本(@yokomotod)です。 このブログはSREチームブログリレー4日目の記事です。 昨日は山本さんによるSRE作業もGemini CLIで効率化する記事でした。 www.m3tech.blog 続けて今日もAIコーディング関連、Claude CodeのSDKが気になって触ってみた知見を紹介します。 言わずもがなClaude Codeは強力なツールで、最近はHooksなども登場し、拡張性もどんどん強化されています。 しかし、まだまだもっと自由に機能強化して「オレの最強のClaude Code」を作ってみたいですよね。 というわけで、Claude Code SDKを使えばそういうことも出来るのかな? と思って遊んでみました。 ソースコードはこちらでも公開しています。 github.com Claude Code SDK コマンドライン T

                                                                                Claude Code SDKでClaude Code Webを作ってみる - エムスリーテックブログ
                                                                              • ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PDF編) | DevelopersIO

                                                                                こんちには。 データアナリティクス事業本部 インテグレーション部 機械学習チームの中村です。 今回は話題のChatGPTにコンテキストを与える際に必要となるファイルパース処理について見ていきたいと思います。 本記事ではPDFに焦点を絞ってみていきます。既存のライブラリ内の実装も確認していきます。 先行事例の実装 先行事例の実装として、よく話題となる以下のライブラリを見ていきます。 (LlamaIndexとLlamaHubはほぼ同じですが、parserとしては片方にしかないものもあるため) LlamaIndex https://github.com/jerryjliu/llama_index https://gpt-index.readthedocs.io/en/latest/index.html LlamaHub https://github.com/emptycrown/llama-hu

                                                                                  ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PDF編) | DevelopersIO
                                                                                • LogLog Games

                                                                                  The article is also available in Chinese. Disclaimer: This post is a very long collection of thoughts and problems I've had over the years, and also addresses some of the arguments I've been repeatedly told. This post expresses my opinion the has been formed over using Rust for gamedev for many thousands of hours over many years, and multiple finished games. This isn't meant to brag or indicate su