並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 60件

新着順 人気順

python file write float formatの検索結果1 - 40 件 / 60件

  • Amazon Connect + Whisper + GPT-4 Turboで、発話から個人情報(名前、住所、生年月日)を正しく認識できるか試してみた | DevelopersIO

    構成 構成としては、下記の通りです。 Connectのフローの詳細は下記の通りです。 例として、発話で住所を認識させる処理の流れは以下のとおりです。 コンタクトフロー内で「メディアストリーミングの開始」ブロックを使って、Kinesis Video Stream(KVS)への音声のストリーミングを開始します。 顧客は、住所を含めた発話をします。 「顧客の入力を保存する」ブロックで、顧客が特定の番号を押すと、ストリーミングを終了します。 「AWS Lambda関数を呼び出す」ブロックを使い、LambdaでKVSからデータを取得します。取得したデータをWAV形式に変換し、Whisper APIで文字起こしします。文字起こし内容から、GPT-4 Turboで住所のみを抽出します。 プロンプト再生で、住所のみを音声出力します。 以下の図は、電話での対話の流れを示しています。 前提 2023年11月時

      Amazon Connect + Whisper + GPT-4 Turboで、発話から個人情報(名前、住所、生年月日)を正しく認識できるか試してみた | DevelopersIO
    • 【コード付き】Pythonを使った偏微分方程式の数値解法【入門】 - LabCode

      偏微分方程式の数値解法とは偏微分方程式の数値解法は、偏微分方程式(PDE: Partial Differential Equations)の解を近似的に求めるための手法のことを指します。これらの方程式は、多くの場合、解析的な解が見つけられないため、数値的な手法が必要となります。以下に、主な数値解法をいくつか紹介します。 有限差分法(Finite Difference Method): 空間や時間を離散的なグリッドに分割し、微分を差分に置き換えることにより近似します。この方法は直感的で実装が比較的簡単ですが、グリッドの選択が解の精度に大きく影響します。有限要素法(Finite Element Method): 問題の領域を小さな「要素」に分割し、各要素内で方程式を近似します。この方法は複雑な形状や境界条件を持つ問題に適しています。有限体積法(Finite Volume Method): 保存

        【コード付き】Pythonを使った偏微分方程式の数値解法【入門】 - LabCode
      • MCP Python SDK のドキュメント|npaka

        以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

          MCP Python SDK のドキュメント|npaka
        • GPT in 60 Lines of NumPy | Jay Mody

          January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

          • BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita

            このようなゲームを作りました。基本的には迷路のゲームです。 サイトのリンク 本記事ではこのゲームの製作過程を掲載すると共に、きっと有益にな情報をまとめます。楽しんで頂けたら幸いです。 Step0 前提 まず用語を整理します。 Blender : 3DCG制作ソフト。Pythonによって操作が可能になっています。 Python : 言わずと知れた有名プログラミング言語。 Unity : ゲーム制作ソフト。スタート画面の表示やゲームオーバーの判定などをしてくれます。言語はC#です。 大まかな流れとしては、 Step1. Blenderで3Dオブジェクトを作成 Step2. Pythonでそれを迷路に組み立てる Step3. Unityでゲームとして完成させる という風になっています。 コードに関しては、読みやすさも考え記事中においては一部抜粋に留めています。もし全体のコードを知りたい場合はプル

              BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita
            • Writing a C compiler in 500 lines of Python

              A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

              • 缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる

                はじめに ——あるいは、「知っている」と「理解している」の間 Rustのことは、知っていた。学習もしていた。実務でも使っていた。 でも、それは知っているつもりだった。 知ってるつもり 無知の科学 (ハヤカワ文庫NF) 作者:スティーブン スローマン,フィリップ ファーンバック早川書房Amazon 日々Rustで開発し、BoxとRcとArcを使い分け、tokio::spawnでタスクを生成し、?演算子を当たり前のように書いている。FFI?PyO3使えばいいでしょ。WebAssembly?wasm-bindgenがあるじゃない。技術的には、確かに「使える」レベルにはあった。 でも、心のどこかで感じていた違和感があった。 オートバイのエンジンを分解できる人と、エンジンが動く原理を理解している人は違う。コードが動くことと、なぜそう書くべきかを理解することも違う。私は前者だった。メカニックではあった

                  缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる
                • 生成AI と Wikipedia記事 で 子供向けお仕事提案bot を作ってみよう(Azure OpenAI + RAG) - ENGINEERING BLOG ドコモ開発者ブログ

                  NTT コノキューに出向中の澤山です。 今年の7月にドコモから、コノキューにやってきました。 この記事は、NTTドコモ アドベントカレンダー2023 21日目の記事です。 この記事では、Wikipedia記事 と Azure OpenAI API、既存のモデルの3つを用い、RAG(Retrieval-Augmented Generation)のためのデータ作成と、RAGを活用した子ども向けお仕事提案botを作ります。 (記事の情報は2023/11月のものです。) ※プロンプトに関するTipsをまとめた記事はこちらです。 qompass.nttqonoq.com 生成AI / ChatGPT の大流行 子供のための、生成AI活用方法、ってある? 子供向けお仕事提案チャットボットを作ってみる 全体像 ステップ1 Wikipedia + Azure OpenAI service でお仕事情報をま

                    生成AI と Wikipedia記事 で 子供向けお仕事提案bot を作ってみよう(Azure OpenAI + RAG) - ENGINEERING BLOG ドコモ開発者ブログ
                  • 生成AIとArduinoで作る姿勢矯正システム - 振動で教える猫背防止デバイス - Insight Edge Tech Blog

                    こんにちは、Insight Edgeの小林まさみつです。本記事は Insight Edge Advent Calendar 2025 の8日目の記事です。 最近は生成AIをソフトウェア領域に応用した開発をしていますが、今回は趣向を変えてハードウェアと組み合わせたシステムを作成してみたので紹介します。 目次 1. はじめに 1.1 なぜ作ったのか 1.2 完成システムの紹介 1.3 この記事で分かること 2. システム概要 2.1 全体構成図 2.2 使用技術スタック 2.3 動作の流れ 3. ハードウェア編:振動モーター制御回路 3.1 必要な部品リスト 3.2 回路図と配線 3.3 動作確認とコード 4. ソフトウェア編:姿勢判定システム 4.1 カメラ設置とPythonでの画像取得 4.2 生成AI(Bedrock Claude Sonnet 4)との連携 4.3 Arduino との

                      生成AIとArduinoで作る姿勢矯正システム - 振動で教える猫背防止デバイス - Insight Edge Tech Blog
                    • H200 GPU x 8基で Qwen2.5-VL-72B-Instruct を使った OCR を試してみる - ABEJA Tech Blog

                      ABEJAでデータサイエンティストをしている藤原です。 今回は、株式会社ハイレゾ様のGPUクラウドサービス「GPUSOROBAN」で H200 GPU × 8基構成のシングルノードサーバを用いて、大規模モデルを使用した検証を実施しました。本記事では、その検証でのGPUサーバの使用方法や、検証内容の一つである Qwen2.5-VL-72B-Instruct を用いたOCRの結果についてご紹介します。 highreso.jp はじめに GPUクラウドサービス「GPUSOROBAN」について GPUサーバの使い方の方針と事前準備 Qwen2.5-VL-72B-Instruct を使った OCR を試してみる 条件 実装 実行時のGPU使用状況と処理速度 検証1. 通常の文書のOCR 検証2. チャート・グラフのようなテキストで表現されていない情報のテキスト化 検証3. 複雑なレイアウトのドキュメ

                        H200 GPU x 8基で Qwen2.5-VL-72B-Instruct を使った OCR を試してみる - ABEJA Tech Blog
                      • Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction - cl-fast-ecs by Andrew

                        Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction In this series of tutorials, we will delve into creating simple 2D games in Common Lisp. The result of the first part will be a development environment setup and a basic simulation displaying a 2D scene with a large number of physical objects. It is assumed that the reader is familiar with some high-level programming language, has a gener

                          Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction - cl-fast-ecs by Andrew
                        • Running LLaMA 7B and 13B on a 64GB M2 MacBook Pro with llama.cpp

                          Running LLaMA 7B and 13B on a 64GB M2 MacBook Pro with llama.cpp See also: Large language models are having their Stable Diffusion moment right now. Facebook's LLaMA is a "collection of foundation language models ranging from 7B to 65B parameters", released on February 24th 2023. It claims to be small enough to run on consumer hardware. I just ran the 7B and 13B models on my 64GB M2 MacBook Pro! I

                            Running LLaMA 7B and 13B on a 64GB M2 MacBook Pro with llama.cpp
                          • AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る

                            初めまして、株式会社Berryの齋藤です。 みなさまLambdaはやっておりますでしょうか。 Berryでも3Dデータの自動処理を行う上で数多くのLambda関数を作成、運用しています。 その中で3Dデータのプレビュー生成が必要になったため、blenderによるプレビュー生成を行うことにしました。 通常であればEC2を使い、レンダリングサーバーを立てることが一般的かと思いますが、費用面・運用面を考慮し、Lambdaによるサーバーレスなレンダリングサーバーを作成することにしました。 非常にニッチなユースケースですが、ざっと検索したところ日本語の情報が少なかったので、今回はblenderをLambda上で動かす方法を紹介したいと思います。 サンプルリポジトリ 前提条件 AWS CLIとAWSアカウントが設定済み Dockerインストール済み (x64のCPUで検証しています。armの場合はダウ

                              AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る
                            • Font with Built-In Syntax Highlighting

                              Note: I received a lot of great feedback from the discussions at Mastodon and Hacker News, so I've updated the post with some improvements to the font! I've also added some further examples and acknowledgements at the end. Syntax Highlighting in Hand-Coded Websites The problem I have been trying to identify practical reasons why hand-coding websites with HTML and CSS is so hard (by hand-coding, I

                              • Amazon ConnectとKinesis Video Streamsを利用した音声データの録音と保存(「留守番電話」や「AIチャットボット」で利用) | DevelopersIO

                                はじめに Amazon Connectでエージェントが介在しない「留守番電話」や「AIチャットボット」で録音したい場合、Kinesis Video Streams(以降、KVS)経由でAWS Lambdaを使い音声データの録音と保存する方法をまとめました。 Amazon Connectでは、下記のコンタクフローのブロックで録音できますが、録音条件は、顧客とエージェントが繋がってからのみ録音されます。 エージェントが介在しない、「留守番電話」やAmazon Lexと組み合わせた「AIチャットボット」の場合、録音機能は利用できません。 解決策として、コンタクフロー内で「メディアストリーミングの開始」というブロックを利用し、KVSにメディアデータを保存できます。ここで注意が必要なのは、保存されたメディアデータがMatroska(MKV)形式となるため、一般的な形式であるWAVなどの形式に変換する

                                  Amazon ConnectとKinesis Video Streamsを利用した音声データの録音と保存(「留守番電話」や「AIチャットボット」で利用) | DevelopersIO
                                • Node.js — Node.js v24.0.0 (Current)

                                  2025-05-06, Version 24.0.0 (Current), @RafaelGSS and @juanarbol We’re excited to announce the release of Node.js 24! This release brings several significant updates, including the upgrade of the V8 JavaScript engine to version 13.6 and npm to version 11. Starting with Node.js 24, support for MSVC has been removed, and ClangCL is now required to compile Node.js on Windows. The AsyncLocalStorage API

                                    Node.js — Node.js v24.0.0 (Current)
                                  • python_modules.pdf

                                    Python3 OpenCV / Pillow / pygame / Eel / PyDub / NumPy / matplotlib / SciPy / SymPy / gmpy2 / hashlib, passlib / Cython / Numba / ctypes / PyInstaller / curses / tqdm / JupyterLab / json / psutil / urllib / zenhan / jaconv Copyright © 2017-2025, Katsunori Nakamura 2025 8 19 Python ‘ .py’ Python Python Windows PSF Python py .py Enter macOS Linux PSF Python python3 .py Enter Anaconda Prompt Python p

                                    • 0.8.0 Release Notes ⚡ The Zig Programming Language

                                      Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

                                      • Solving Quantitative Reasoning Problems With Language Models

                                        Solving Quantitative Reasoning Problems with Language Models Aitor Lewkowycz∗, Anders Andreassen†, David Dohan†, Ethan Dyer†, Henryk Michalewski†, Vinay Ramasesh†, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur∗, Guy Gur-Ari∗, and Vedant Misra∗ Google Research Abstract Language models have achieved remarkable performance on a wide range of tasks that require

                                        • はじめての自然言語処理 Hugging Face Transformers で T5 を使ってみる | オブジェクトの広場

                                          前回が分量的にやたらと重かったので、今回はその反省(反動?)を踏まえて軽い感じでいってみます。第7回で紹介した T5 ですが Hugging Face の Transformers でもサポートされてますので、その使用方法をご紹介したいと思います。 1. はじめに 今回は久しぶりに T5 の話です。T5 に関しては第7回、第8回で一度紹介しているので、未読の方は記事に目を通してから戻ってきて頂けると、より理解がしやすいと思います。 さて、 T5 ですが Google のオリジナルコード(以下 “t5"と記述)1は敷居が高いと感じる方もいらっしゃるのではないでしょうか。 Estimator API ベースのコードや gin による設定など慣れていないと、とっつきにくいのではないかと思います。 そこで今回は Hugging Face の Transformers 2を使って T5 を動かす方法

                                            はじめての自然言語処理 Hugging Face Transformers で T5 を使ってみる | オブジェクトの広場
                                          • 0.10.0 Release Notes ⚡ The Zig Programming Language

                                            Tier 4 Support § Support for these targets is entirely experimental. If this target is provided by LLVM, LLVM may have the target as an experimental target, which means that you need to use Zig-provided binaries for the target to be available, or build LLVM from source with special configure flags. zig targets will display the target if it is available. This target may be considered deprecated by

                                            • Blog

                                              Hachi: An (Image) Search engine Only the dead have seen the end of war .. George Santayana For quite some time now, i have been working on and off on a fully self-hosted search engine, in hope to make it easier to search across Personal data in an end to end manner. Even as individuals, we are hoarding and generating more and more data with no end in sight. Such "personal" data is being stored fro

                                              • GIMP - Development version: GIMP 2.99.12 Released

                                                GIMP 2.99.12 is a huge milestone towards GIMP 3.0. Many of the missing pieces are getting together, even though it is still a work in progress. As usual, issues are expected and in particular in this release which got important updates in major areas, such as canvas interaction code, scripts, but also theming… “CMYK space invasion”, by Jehan (based on GPLv3 code screencast), Creative Commons by-sa

                                                  GIMP - Development version: GIMP 2.99.12 Released
                                                • 【GROMACS】Umbrella samplingによるMD simulation 【In silico創薬】【SMD】 - LabCode

                                                  Windows 11 Home, 13th Gen Intel(R) Core(TM) i7-13700, 64 ビット オペレーティング システム、x64 ベース プロセッサ, メモリ:32GB Umbrella Samplingの概要と目的Umbrella Samplingは、分子がめったに起こさないような状態変化(たとえば、タンパク質同士が離れるなど)を詳しく調べるための計算手法です。通常の分子動力学(MD)では、エネルギー的に安定な状態にとどまりやすく、重要な変化が起こる確率が低いため、十分な情報が得られません。 たとえば、タンパク質AとBがくっついている状態から、少しずつ離れていく様子を観察したいとき、まずAとBを少しずつ引き離すSteered Molecular Dynamics(SMD)などのシミュレーションで、さまざまな距離の構造を取得します。その中から、0.5nm、0.7

                                                  • prompts.chat

                                                    Welcome to the “Awesome ChatGPT Prompts” repository! While this collection was originally created for ChatGPT, these prompts work great with other AI models like Claude, Gemini, Hugging Face Chat, Llama, Mistral, and more. ChatGPT is a web interface created by OpenAI that provides access to their GPT (Generative Pre-trained Transformer) language models. The underlying models, like GPT-4o and GPT-o

                                                    • MACEによる機械学習を用いた分子動力学計算【MD simulation】 - LabCode

                                                      宣伝こちらの記事は合成生物学大会iGEMの強豪校であるiGEM-Wasedaさん協力のもと執筆されました。ご協力誠にありがとうございます! 【iGEM-Waseda】は合成生物学の研究を行う早稲田大学の学術サークルです。iGEMと呼ばれる合成生物学の世界大会の世界大会に出場するために日々研究に励んでいらっしゃいます。 本記事では、iGEM2024で日本Undergrad部門で史上初のTOP10に選ばれたプロジェクトの一環として、特にIn Silicoシミュレーションに関わる部分のツールの一部を紹介しています。プロジェクトの詳細については、iGEM-Wasedaの成果報告サイトをご覧いただければ幸いです。 MACEとはMACEは、機械学習ポテンシャル(Machine Learning Potential)の一種として開発されたツールで、材料内の原子間相互作用を高精度かつ高速に予測できるのが特

                                                        MACEによる機械学習を用いた分子動力学計算【MD simulation】 - LabCode
                                                      • NumPy 2.0.0 Release Notes — NumPy v2.4.dev0 Manual

                                                        Getting started What is NumPy? Installation NumPy quickstart NumPy: the absolute basics for beginners Fundamentals and usage NumPy fundamentals NumPy for MATLAB users NumPy tutorials NumPy how-tos Advanced usage and interoperability Using NumPy C-API F2PY user guide and reference manual Under-the-hood documentation for developers Interoperability with NumPy Extras Glossary Release notes 2.4.0 2.3.

                                                        • Apache Arrow の紹介 - GO Tech Blog

                                                          タクシーアプリ『GO』のデータエンジニアをしている牧瀬です。 Apache Arrow という OSS を知り、弊社でも活用できる機会があるのではないかと興味を持ちました。本記事では Apache Arrow の概要を紹介します。 概要 Apache Arrow とは、インメモリのカラムナーフォーマット仕様および、それを操作するための各種プログラミング言語用のライブラリ実装です。 Apache Arrow が作られた目的は、大きなデータセットを高速に処理したり、データセットを異なるシステムやプログラミング言語の間で効率的にやりとりするためです。 なぜインメモリ? 一般的なカラムナーフォーマットの多くはストレージに保存する際のフォーマットですが、Apache Arrow はインメモリの仕様も定められています。 これは 1台のマシン上で異なる言語やプロセスの間でデータをやり取りする際、シリアラ

                                                            Apache Arrow の紹介 - GO Tech Blog
                                                          • Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers

                                                            For demonstration purposes, we'll fine-tune the multilingual version of the small checkpoint with 244M params (~= 1GB). As for our data, we'll train and evaluate our system on a low-resource language taken from the Common Voice dataset. We'll show that with as little as 8 hours of fine-tuning data, we can achieve strong performance in this language. 1{}^11 The name Whisper follows from the acronym

                                                              Fine-Tune Whisper For Multilingual ASR with 🤗 Transformers
                                                            • はじめての自然言語処理 ELYZA 日本語 Llama 2 指示応答モデルのファインチューニングと vLLM での推論 | オブジェクトの広場

                                                              今回は Elyza さんの日本語 Llama 2 指示応答モデルをファインチューニングし、vLLM にデプロイして高速に推論してみます。70 億パラメータモデルならギリギリ Tesla T4 x 1 の構成でも float16 で動かせるかと思ったのですが、どうだったでしょうか。vLLM には OpenAI 互換の API インタフェースも備えているので、ついでに LangChain からも接続してみたり。 1. はじめに 今回は Elyza さんが公開されている大規模指示応答言語モデルである、ELYZA-japanese-Llama-2-7b-fast-instruct1 をファインチューニングして vLLM で推論してみます。 そんな訳で今回あまり書くことがなく、動かし方だけサラっと書いて「動きましたー。では良いお年を~。」で締めることにします。 しかし、時代感覚無視の隔月連載でネタを

                                                                はじめての自然言語処理 ELYZA 日本語 Llama 2 指示応答モデルのファインチューニングと vLLM での推論 | オブジェクトの広場
                                                              • What's New in Emacs 28.1?

                                                                Try Mastering Emacs for free! Are you struggling with the basics? Have you mastered movement and editing yet? When you have read Mastering Emacs you will understand Emacs. It’s that time again: there’s a new major version of Emacs and, with it, a treasure trove of new features and changes. Notable features include the formal inclusion of native compilation, a technique that will greatly speed up y

                                                                • Vim9 script for Python Developers · GitHub

                                                                  vim9script4pythondevelopers.md Vim9 script for Python Developers Vim9 script�Vim script��������������������������������������������������系��� def������義����������Vim script��vim9script�����使����������(vim9script���

                                                                    Vim9 script for Python Developers · GitHub
                                                                  • InfluxDB及びGrafanaを利用して為替損益を自動計算し可視化してみた - GMOインターネットグループ グループ研究開発本部

                                                                    はじめに 最近円安の進行で値動きが激しいですね。特に9月に円相場は、24年ぶりの円安水準となる1ドル=140円台前半まで下落しましたので、この状況で為替損益を常に監視したい方々が多くなるでしょう。今回はUSDJPYの為替レートを継続的にInfluxDBに格納し、Grafanaで為替損益を可視化するシステムの構築方法を紹介したいと思います。 ちなみに、為替レートの変動により生じた利益を為替差益、生じた損失を為替差損といいます。たとえば、米ドルを1ドル=105円のときに購入した後、為替レートが円安方向に動いて1ドル=120円となった場合、購入していたドルを円に交換すれば1ドルにつき15円の利益を得ることになり、これが為替差益となります。逆に、為替レートが円高に進んで1ドル=100円となった場合は1ドルにつき5円の損失をこうむることになり、これが為替差損となります。 1.やりたいこと Docke

                                                                      InfluxDB及びGrafanaを利用して為替損益を自動計算し可視化してみた - GMOインターネットグループ グループ研究開発本部
                                                                    • Node.js — Node.js v22.10.0 (Current)

                                                                      Or if the package is only meant to be run on Node.js and wants to fallback to CJS on older versions that don't have require(esm): { "type": "module", "exports": { // On new version of Node.js, both require() and import get the ESM version "module-sync": "./index.js", // On older version of Node.js, where "module-sync" and require(esm) are // not supported, use the CJS version to avoid dual-package

                                                                        Node.js — Node.js v22.10.0 (Current)
                                                                      • Python: TFRecord フォーマットについて - CUBE SUGAR CONTAINER

                                                                        TFRecord フォーマットは、TensorFlow がサポートしているデータセットの表現形式の一つ。 このフォーマットは、一言で表すと TensorFlow で扱うデータを Protocol Buffers でシリアライズしたものになっている。 特に、Dataset API との親和性に優れていたり、Cloud TPU を扱う上で実用上はほぼ必須といった特徴がある。 今回は、そんな TFRecord の扱い方について見ていくことにする。 使った環境は次のとおり。 $ sw_vers ProductName: macOS ProductVersion: 11.5 BuildVersion: 20G71 $ python -V Python 3.9.6 $ pip list | grep -i tensorflow tensorflow 2.5.0 tensorflow-datasets

                                                                          Python: TFRecord フォーマットについて - CUBE SUGAR CONTAINER
                                                                        • Laurence Tratt: Automatic Video Editing

                                                                          Amongst the many consequences of COVID-19 has been the suspension of in-person talks: suddenly, people like me have had to think about how to produce prerecorded videos. In this article I’m going to explain what I’ve come to understand about video recording and the “automatic video editing” technique I’ve used for videos such as Virtual Machine Warmup Blows Hot and Cold. To give you an idea of how

                                                                          • A string formatting library in 65 lines of C++

                                                                            In this write-up, I will walk you through an implementation of a string formatting library for C++ I came up with for my video game. The end result came out really compact, at only 65 lines of code—providing a skeleton that can be supplemented with additional functionality at low cost. Usage Given a format buffer… char buffer[64]; String_Buffer buf = {str, sizeof str}; …the fmt::format function pr

                                                                            • Node.js — Node.js v23.0.0 (Current)

                                                                              2024-10-16, Version 23.0.0 (Current), @RafaelGSS We’re excited to announce the release of Node.js 23! Key highlights include: Enabling require(esm) by default for Node.js applications Removing support for Windows 32-bit systems Stabilizing the node --run command Enhancements to the test runner, including glob pattern support for coverage files Node.js 23 will replace Node.js 22 as the ‘Current’ re

                                                                                Node.js — Node.js v23.0.0 (Current)
                                                                              • An Experienced (Neo)Vimmer's Workflow

                                                                                Motivation Ever since TJ said “Personalized Development Environment,” the phrase latched onto me like a cobweb in a mineshaft. A Personalized Development Environment (PDE) describes an ideal setup that is tailored to your needs and preferences – it lies between a bare-bone text editor and a full-fledged IDE. It is a place where you can be productive, efficient, and comfortable. It is a place that

                                                                                • The World's Smallest Hash Table | orlp.net

                                                                                  This December I once again did the Advent of Code, in Rust. If you are interested, my solutions are on Github. I wanted to highlight one particular solution to the day 2 problem as it is both optimized completely beyond the point of reason yet contains a useful technique. For simplicity we’re only going to do part 1 of the day 2 problem here, but the exact same techniques apply to part 2. We’re go