並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 24 件 / 24件

新着順 人気順

python if key not exist in dictの検索結果1 - 24 件 / 24件

  • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

    FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

      FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
    • LangChainを使わない - ABEJA Tech Blog

      TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

        LangChainを使わない - ABEJA Tech Blog
      • CIの時間を(できるだけ楽して)半分にしてみた - Nealle Developer's Blog

        こんにちは、ニーリーの佐古です。 現在開発速度や開発者体験の向上のため、取り組みの諸々を遂行しています。 開発者体験とCI 天井の雨漏りが4か月ほど止まらないので私の開発者体験は酷いことになっています。 さて、皆さんCIの待ち時間はお好きですか?私は大嫌いです。 弊社バックエンドリポジトリのPR時CIはプロダクトの成長に合わせて実行時間が順調に伸びており、 開発速度と開発者体験の双方に悪影響をもたらしていました。 実は別チームで改善のための試みがなされたことはあったのですが、 そこで行き当たった問題をある程度解決してどうにかエピソードになる程度の成果を得られたので 簡単に記しておこうと思います。 前提 プロダクトはDjangoで、リポジトリはGitHubで管理されています。 AS-WAS ついこないだまでのPR時CI。 こちらがもともとのGitHub CIのグラフです。 正直経験上そこまで

          CIの時間を(できるだけ楽して)半分にしてみた - Nealle Developer's Blog
        • ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)

          (module (function_definition (identifier) # ← ここに関数名「sample_func」が含まれます (parameters) (block (expression_statement (call (identifier) (argument_list (string)))))) (expression_statement (call (identifier) (argument_list)))) ノードが色々取れましたが、「function_definition」が関数、その子である「identifier」が関数名を表すため、 function_definition == 子ノード ==> identifier となっている箇所を探索すれば抽出できます(関数ではあっても「lambda」など異なる場合もあります)。 今回は上記のようにTree-si

            ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)
          • AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る

            初めまして、株式会社Berryの齋藤です。 みなさまLambdaはやっておりますでしょうか。 Berryでも3Dデータの自動処理を行う上で数多くのLambda関数を作成、運用しています。 その中で3Dデータのプレビュー生成が必要になったため、blenderによるプレビュー生成を行うことにしました。 通常であればEC2を使い、レンダリングサーバーを立てることが一般的かと思いますが、費用面・運用面を考慮し、Lambdaによるサーバーレスなレンダリングサーバーを作成することにしました。 非常にニッチなユースケースですが、ざっと検索したところ日本語の情報が少なかったので、今回はblenderをLambda上で動かす方法を紹介したいと思います。 サンプルリポジトリ 前提条件 AWS CLIとAWSアカウントが設定済み Dockerインストール済み (x64のCPUで検証しています。armの場合はダウ

              AWS Lambdaにblenderを載せてサーバーレスなレンダリングサーバーを作る
            • A viable solution for Python concurrency

              Concerns over the performance of programs written in Python are often overstated — for some use cases, at least. But there is no getting around the problem imposed by the infamous global interpreter lock (GIL), which severely limits the concurrency of multi-threaded Python code. Various efforts to remove the GIL have been made over the years, but none have come anywhere near the point where they w

              • Azure OpenAI Service の Assistants API でデータ分析 - Taste of Tech Topics

                こんにちは、igaです。 最近は気温の上下が大きいので、服装選びが大変ですね。 今回は、Azure OpenAI Servce Assistants APIを使ってみました。 Azure OpenAI Servce Assistants APIに横浜市の人口データを投入して、人口の増減がどう推移しているのか自動で分析させてみました。 Azure OpenAI Servce Assistants API Azure OpenAI Servce Assistants APIとは Azure OpenAI Servce Assistants APIは、2024年4月現在パブリックプレビューとして利用できる機能です。 learn.microsoft.com Azure OpenAI Servce Assistants API(以降、Assistantsと表記します)により、Azure OpenAI

                  Azure OpenAI Service の Assistants API でデータ分析 - Taste of Tech Topics
                • BigQueryを補完する技術: DuckDBとDataflowでのデータ処理入門 - yasuhisa's blog

                  背景 & Disclaimer DuckDB 概念や代表的なユースケース 使ってみる 1週間〜一ヶ月などある程度の期間、分析で使いたい場合 便利なCLIツールとして使う 所感 参考 Dataflow 代表的なユースケース 具体例 参考 背景 & Disclaimer BigQueryは非常に便利で、BigQueryにさえ上がってしまえばSQLで巨大なデータを簡単に相手にできます とはいえ、BigQueryに行きつくまでが大変な場合もありえます 例: 個人情報を含むsensitiveなデータで、BigQueryに気軽に上げられないケース 一時的であっても、相談なしにその手のデータを気軽にアップロードするのはやめてください... 数万件程度であれば手元のエクセルで開いて、問題ない行/列だけに絞る、ということもできるが、もっと量が多いデータだとそういうわけにもいかない。そもそも分析はSQLでやり

                    BigQueryを補完する技術: DuckDBとDataflowでのデータ処理入門 - yasuhisa's blog
                  • Bucket full of secrets – Terraform exfiltration | Mercari Engineering

                    Background At Mercari, we utilize many microservices developed across multiple different teams. Each team has ownership over not only their code, but also the infrastructure necessary to run their services. To allow developers to take ownership of their infrastructure we use HashiCorp Terraform to define the infrastructure as code. Developers can use Terraform native resources or custom modules pr

                      Bucket full of secrets – Terraform exfiltration | Mercari Engineering
                    • 【論文詳解】RestGPT: ユーザ指示からRESTful APIを実行する新たなLLMエージェント

                      はじめに 初めまして、株式会社Carnotでインターンをしている長谷川と申します。 Carnotでは、LLMを活用し日々の業務フローの効率化や自動化をするためのソリューション「Promptflow」の開発を行っています。 上記のようなワークフローを作成する際には、SlackやGmail、Notionなど各サービスのAPIを連携させていく必要があります。しかし、そのような開発にはプログラミングの知識が必須で、非エンジニアにとってAPIを用いたシステムを作成することは難しいと思われます。そこで、今回は言語のみの指示から複数のAPIを呼び出すことが可能なRestGPTという手法を調査しました。 例えば音楽配信サービスを使う中で「YOASOBIが出した最新のアルバムを自分のプレイリストに追加する」という作業をしたい時、これを自分で行うのは面倒である上、コードを書いて自動化するのも非エンジニアにとっ

                        【論文詳解】RestGPT: ユーザ指示からRESTful APIを実行する新たなLLMエージェント
                      • はじめての自然言語処理 Sentence Transformer による文章ベクトル化の検証 | オブジェクトの広場

                        今回は文章のベクトル化を扱います。文章のベクトル化は 第9回 で扱っていますが、当時に比べてデータセット、事前学習モデル、ライブラリ等でいろいろと状況が好転しているので、改めて扱ってみることにしました。最近は大規模データセットを用いた事前学習が公開されているので、作り比べてみます。 1. はじめに 今回は sentence-transformers1 で文章のベクトル化にチャレンジしてみます。文章をベクトル(埋め込み表現)化することで、文章間の意味合い的な比較が可能になり、類似文章検索やクラスタリングなどが可能になります。 このライブラリは 第9回 で紹介済みですが、当時のバージョンは 0.2.5.1 であり、その後に損失関数が追加されていたり、サンプルコードが充実したりとかなりの更新が入って執筆時点で 2.1.0 になっています。ついでに言うと 第9回 は結構アクセス数があるみたいなので

                          はじめての自然言語処理 Sentence Transformer による文章ベクトル化の検証 | オブジェクトの広場
                        • What's New in Emacs 28.1?

                          Try Mastering Emacs for free! Are you struggling with the basics? Have you mastered movement and editing yet? When you have read Mastering Emacs you will understand Emacs. It’s that time again: there’s a new major version of Emacs and, with it, a treasure trove of new features and changes. Notable features include the formal inclusion of native compilation, a technique that will greatly speed up y

                          • bytecode interpreters for tiny computers ⁑ Dercuano

                            Introduction: Density Is King (With a Tiny VM) I've previously come to the conclusion that there's little reason for using bytecode in the modern world, except in order to get more compact code, for which it can be very effective. So, what kind of a bytecode engine will give you more compact code? Suppose I want a bytecode interpreter for a very small programming environment, specifically to minim

                            • Python behind the scenes #11: how the Python import system works

                              If you ask me to name the most misunderstood aspect of Python, I will answer without a second thought: the Python import system. Just remember how many times you used relative imports and got something like ImportError: attempted relative import with no known parent package; or tried to figure out how to structure a project so that all the imports work correctly; or hacked sys.path when you couldn

                              • はじめての自然言語処理 Transformer 系モデルの推論高速化の検証 | オブジェクトの広場

                                今回は Transformer 系のモデル、具体的には BERT, T5, GPT の推論を高速化してみます。高速化手法として FasterTransformer, Torch-TensorRT, AWS Neuron を用い、素 の transfomers に比べ、どの程度速くなるか(ならないか)、利点・欠点を確認してみましょう。 1. はじめに 今回は Transformer 系のモデル、具体的には BERT, T5, GPT の推論を様々な技術を使って高速化してみます。 高速化の元ネタは Hugging Face の transformers1 縛りとして、素の transformers で推論する場合に比べ、 どの程度速くなるか(ならないか)見てみましょう。 推論を高速化する技術としては FasterTransfomer2, Torch-TensorRT3, AWS Neuron(

                                  はじめての自然言語処理 Transformer 系モデルの推論高速化の検証 | オブジェクトの広場
                                • Plan 9 Desktop Guide

                                  PLAN 9 DESKTOP GUIDE INDEX What is Plan 9? Limitations and Workarounds Connecting to Other Systems VNC RDP SSH 9P Other methods Porting Applications Emulating other Operating Systems Virtualizing other Operating Systems Basics Window Management Copy Pasting Essential Programs Manipulating Text in the Terminal Acme - The Do It All Application Multiple Workspaces Tiling Windows Plumbing System Admin

                                  • From Python to Elixir Machine Learning

                                    As Elixir's Machine Learning (ML) ecosystem grows, many Elixir enthusiasts who wish to adopt the new machine learning libraries in their projects are stuck at a crossroads of wanting to move away from their existing ML stack (typically Python) while not having a clear path of how to do so. I would like to take some time to talk to WHY I believe now is a good time to start porting over Machine Lear

                                      From Python to Elixir Machine Learning
                                    • プログラムの言語変換 & ローカル依存ファイルの集約を行うワークフロー(LangGraph・並列処理)

                                      上記のとおり、「parallel_document_massege」~ 「parallel_create_code」までが並列で処理されるノードです。ある程度ノードをまとめてしまってもよいですが、処理ごとに分けておくとノードの付け替えなどでカスタマイズがしやすいかと思います。 コーディング 使用したライブラリ コード内で使用した外部ライブラリとインストールコマンドは以下です。 $ pip install chardet==5.2.0 $ pip install aiofiles==23.2.1 $ pip install ipython==8.27.0 $ pip install langchain-core==0.3.28 $ pip install langchain-anthropic==0.3.0 $ pip install langgraph==0.2.60 import os

                                        プログラムの言語変換 & ローカル依存ファイルの集約を行うワークフロー(LangGraph・並列処理)
                                      • StreamlitでEDINETから有価証券報告書をダウンロードして分析するWEBアプリをサクっとつくろう

                                        参考文献 ※1 EDINET API機能追加に係る利用者向け説明会資料 ※2 EDINET API仕様書 Version2 ①会社名の選択 まず会社一覧及び、会社のEDINETコードが必要になってきます。 これについてはAPIで取得する方法はなく公式サイトからZIPを落としてくるか ここからプログラム的に自動でダウンロードする必要があります。 今回は手動であらかじめダウンロードしたものを使います。 公式サイトからダウンロードすると毎回リンクが変わる、上記の直接リンクだと固定という謎仕様のようです(ドキュメントにもそうかいてある) ZIPを展開するとShift-JISのCSVが手に入ります。文字コードに注意しましょう。EDINETからダウンロードするCSVはUTF16なのにこっちはShiftJISなのです。 中身は上記のようなもになっています。 末尾に0がついているものの証券コードも入ってい

                                          StreamlitでEDINETから有価証券報告書をダウンロードして分析するWEBアプリをサクっとつくろう
                                        • 【LlamaIndex】Indexにクエリした際に回答で参考にした箇所(リファレンス)を取得する方法 | DevelopersIO

                                          はじめに 新規事業統括部Passregiチームの山本です。 最近、OpenAIのAPIが公開されたこともあり、効率的に情報を見つけ出す手助けをするための方法として、文章や資料に関する質問に回答できるチャットボットが採用されることが増えてきました。チャットボットが回答する際に、単に直接的な答えだけを返答するのでも良いですが、どこの文章を参考にしたか(=リファレンス)も合わせて回答すれば、ユーザは一次情報を読むことができたり、周辺の情報も合わせて見ることができるので、より安心して利用できそうです。 今回は、LlamaIndexでリファレンスした箇所を把握する方法を調べましたので、そのコードを共有します。 (補足) 文章ファイルの内容に関する質問に回答するチャットボット作成するために、ChatGPTなどのAPIのクエリにその文章の内容を入力として加える方法があります。 その際の課題として以下のよ

                                            【LlamaIndex】Indexにクエリした際に回答で参考にした箇所(リファレンス)を取得する方法 | DevelopersIO
                                          • AtCoder - 解法パターンの整理 - 競プロはじめました

                                            よく出る思考パターン・覚えておきたいアイディアをメモしておきます. 問題の分類にもなっています.参考になるコードのリンクをメモしている問題もあります. 【2022.01追記】最近は,このページではなく,タグで分類するようにしています. 入力 出力 改行して出力 bool False, True 比較演算子 all, any 切り捨て・切り上げ(床関数・天井関数) 四捨五入 ソート 反転(逆順) スライス 後ろから指定 文字列操作 置換 リストの結合 deque - 先頭・末尾への追加・削除 アルファベット⇔数字 文字列の位置(左端,右端) 正規表現 リスト操作 注意 2要素の入れ替え set 生成 集合演算 setの中にlistはダメ! 組み合わせ 出現回数 - collections.Counter 同じ値になる組み合わせ 二項係数 二項係数(mod 10**9+7) mod mod 1

                                              AtCoder - 解法パターンの整理 - 競プロはじめました
                                            • ControlNetを作る時に使えそうなスクリプト群公開|とりにく

                                              animagin4.0かfluxでanytestの後継的なもの、月須和さんが作ってくれたらうれしいんだけど、せっかく作り方公開して下さっているんだし、人任せじゃなくて自分でもやるかーーー(ぐてり)ってなっている ようはこれを大量に作れば良いわけでしょ?・・・良く思いついて実行に至ったなぁ pic.twitter.com/IfITy1GFGx — とりにく (@tori29umai) February 7, 2025 それなりに反響があったので需要があると思い、とりかかったのですが、くっそめんどくさいので誰か代わりにやってくれねぇかなぁ(鼻ホジ)と思ったので使えそうなスクリプト群を公開します。 そもそもの発端は月須和さんのこのポストです。 anytestの学習についてちょいと…… あれ基本的な部分は、CNllliteでgray2color作ってた頃と一緒……つまり入力側の画像素材はグレースケ

                                                ControlNetを作る時に使えそうなスクリプト群公開|とりにく
                                              • GitHub - ComfyUI-Workflow/awesome-comfyui: A collection of awesome custom nodes for ComfyUI

                                                ComfyUI-Gemini_Flash_2.0_Exp (⭐+172): A ComfyUI custom node that integrates Google's Gemini Flash 2.0 Experimental model, enabling multimodal analysis of text, images, video frames, and audio directly within ComfyUI workflows. ComfyUI-ACE_Plus (⭐+115): Custom nodes for various visual generation and editing tasks using ACE_Plus FFT Model. ComfyUI-Manager (⭐+113): ComfyUI-Manager itself is also a cu

                                                  GitHub - ComfyUI-Workflow/awesome-comfyui: A collection of awesome custom nodes for ComfyUI
                                                • Django for Startup Founders: A better software architecture for SaaS startups and consumer apps

                                                  In an ideal world, startups would be easy. We'd run our idea by some potential customers, build the product, and then immediately ride that sweet exponential growth curve off into early retirement. Of course it doesn't actually work like that. Not even a little. In real life, even startups that go on to become billion-dollar companies typically go through phases like: Having little or no growth fo

                                                  1