並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 73件

新着順 人気順

python if not in dict keysの検索結果1 - 40 件 / 73件

  • Claudeを"育てる"新常識! Agent Skills徹底解説 - あなたの仕事を自動化する魔法のレシピ ✨|Kyutaro

    Claudeを"育てる"新常識! Agent Skills徹底解説 - あなたの仕事を自動化する魔法のレシピ ✨ 属人化をやめたい。品質を揃えたい。スピードは落とさない。 Agent Skillsは、現場のノウハウを「再現可能な資産」に変えます。プロンプトではなく標準手順×コードで積み上げるから、新人でもベテランと同じ結果に。それを実現するのが、Anthropicの画期的な機能、「Agent Skills」です。 この記事は、導入判断に必要な安全性・運用設計・環境別のリスクと効率、そして即導入できるサンプルまで一気通貫で解説し、あなたが今日からでも「AIを育てる」ための、実践的な設計図を提供します。 1. そもそもAgent Skillsって何? - AIの新しい「引き出し」術 🗄️Agent Skillsとは、端的に言えば「AIに特定のタスクを教え込むための、手順書と道具箱をまとめたフ

      Claudeを"育てる"新常識! Agent Skills徹底解説 - あなたの仕事を自動化する魔法のレシピ ✨|Kyutaro
    • Auth0からCognitoへのユーザー移行 - ROBOT PAYMENT TECH-BLOG

      こんにちは。ROBOT PAYMENT (以下、ロボペイ)でエンジニアをしているtakamoriです。 私が所属しているチームでは、請求先マイページ機能を開発しており、その中でユーザー認証基盤をAuth0からCognitoへと移行させました。そこで今回は、Auth0からCognitoへのユーザー移行手順を書いていきたいと思います。 ※ 本記事ではAuth0やCognitoの環境構築は対象外で、それぞれの環境が構築済み前提となります。 移行手順 Auth0からユーザーをエクスポート Auth0ユーザー情報をCognitoユーザー情報へマッピング Cognitoへユーザーをインポート Auth0からユーザーをエクスポート Auth0からのユーザーをエクスポートするには、ExportUsersJob APIを利用します。GetUsers APIを利用して取得することも可能ですが1,000件の取得

        Auth0からCognitoへのユーザー移行 - ROBOT PAYMENT TECH-BLOG
      • GPT in 60 Lines of NumPy | Jay Mody

        January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

        • 1つの大きなLLM(大規模言語モデル)を複数のGPUで力を合わせて動かそう | IIJ Engineers Blog

          地方拠点の一つ、九州支社に所属しています。サーバ・ストレージを中心としたSI業務に携わってましたが、現在は技術探索・深堀業務を経て、ローカルLLMを中心としたAIソリューションを主軸に対応しています。 2018年に難病を患ったことにより、定期的に入退院を繰り返しつつ、2023年には男性更年期障害の発症をきっかけに、性的違和の治療に一歩足を踏み出しています。 LLM群雄割拠の時代 昨今、ローカルGPUで駆動できるようなLLM(大規模言語モデル)もかなり増えてきて、キャッチコピー的に「ついに我が家にもGPT-4が!」とか言われるようになってまいりました。パラメータ規模で言えば70億~130億(7B-13B)パラメータ、700億(70B)パラメータ、1400億(140B)パラメータあたりのモデルが活発にリリースされているように見受けられます。 大きなモデルをGPU寄せ集めしつつ遊びたい! しかし

            1つの大きなLLM(大規模言語モデル)を複数のGPUで力を合わせて動かそう | IIJ Engineers Blog
          • Claude Desktopに記憶を与えるLocal Memory MCPを自作してみて感動した話

            はじめに Claude Sonnet 4はコーディングが得意だけでなく、ほかのAIより人間性豊かで会話していて深い哲学的な気づきを得られる。そのため、技術的なところだけでなくプライベートのことも含めていろいろ話している。 ただ、ChatGPTと異なりメモリ機能を備え付けではないので、正直物足りないことも多かった。 Claude Desktop では MCP を使えるので、自分で MCP を作ればツール自作できるということに気づいた。そこでローカルで簡易的なメモリ機能を実装してみたら、個人的にとても感動した。 *全体的に個人的感想が多く含まれてます。すみません。 実際に何ができるようになったか まず、どんなことができるようになったか見てもらった方が早いと思う。 私はなぜLocal Memory MCPを作ったかを聞いたら 記憶をベースにかなり詳細な理由を述べてくれた。 AWSが出した新しいA

              Claude Desktopに記憶を与えるLocal Memory MCPを自作してみて感動した話
            • ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)

              (module (function_definition (identifier) # ← ここに関数名「sample_func」が含まれます (parameters) (block (expression_statement (call (identifier) (argument_list (string)))))) (expression_statement (call (identifier) (argument_list)))) ノードが色々取れましたが、「function_definition」が関数、その子である「identifier」が関数名を表すため、 function_definition == 子ノード ==> identifier となっている箇所を探索すれば抽出できます(関数ではあっても「lambda」など異なる場合もあります)。 今回は上記のようにTree-si

                ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)
              • Writing a C compiler in 500 lines of Python

                A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

                • Security best practices when using ALB authentication | Amazon Web Services

                  Networking & Content Delivery Security best practices when using ALB authentication At AWS, security is the top priority, and we are committed to providing you with the necessary guidance to fortify the security posture of your environment. In 2018, we introduced built-in authentication support for Application Load Balancers (ALBs), enabling secure user authentication as they access applications.

                    Security best practices when using ALB authentication | Amazon Web Services
                  • ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ

                    Overview エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。検索とGoが好きです。 エムスリーではChatGPTの可能性にいち早く注目して活用を検討している段階ですが、本格的なデータ投入にはまだ懸念もあり、セキュリティチームと検討を進めている段階です。 そんな中で個人または組織のドキュメントのセマンティック検索と取得を可能にするChatGPTプラグイン「ChatGPT Retrieval Plugin」が登場しました。 github.com 情報検索好きとしては黙っていられず、外部公開用のエムスリーAI・機械学習チームのメンバー紹介ドキュメントを使ってローカルで試してみました。 # 用意したドキュメント 中村弘武は東京都在住で、エムスリーという企業で働いでいます。 エムスリーの検索基盤を主に担当しています。また、書

                      ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ
                    • Document Layout Analysisに物体検出を利用したDocument Object Detectionのすゝめ - LayerX エンジニアブログ

                      はじめに こんにちは。バクラク事業部 機械学習チームの機械学習エンジニアの上川(@kamikawa)です。 バクラクではAI-OCRという機能を用いて、請求書や領収書をはじめとする書類にOCRを実行し、書類日付や支払い金額などの項目内容をサジェストすることで、お客様が手入力する手間を省いています。 書類から特定の項目を抽出する方法は、自然言語処理や画像認識、近年はマルチモーダルな手法などたくさんあるのですが、今回は項目抽出のための物体検出モデルを構築するまでの手順について紹介します。 Document Layout Analysisとは Document Layout Analysisとは、文書のレイアウトを解析するタスク(直訳)のことを指します。具体的には、文書内のさまざまな要素(例えば、テキスト、画像、表、見出し、段落など)を抽出し、それぞれの位置や意味などを明らかにすることを目的とし

                        Document Layout Analysisに物体検出を利用したDocument Object Detectionのすゝめ - LayerX エンジニアブログ
                      • Sublime Text 4

                        The first stable release of Sublime Text 4 has finally arrived! We've worked hard on providing improvements without losing focus on what makes Sublime Text great. There are some new major features that we hope will significantly improve your workflow and a countless number of minor improvements across the board. A huge thanks goes out to all the beta testers on discord and all the contributors to

                          Sublime Text 4
                        • LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog

                          はじめに こんにちは。Algomatic LLM STUDIO 機械学習エンジニアの宮脇(@catshun_)です。 Wang+’23 - A Survey on Large Language Model Based Autonomous Agents ChatGPT が発表されてからおよそ 1 年が経ち、AutoGPT, BabyAGI, HuggingGPT, Generative Agents, ChatDev, Mind2Web, Voyager, MetaGPT, Self-Recovery Prompting, OpenCodeInterpreter, AutoAgents などなど、大規模言語モデル (LLM) の抱負な知識および高度な推論能力を活用した LLM エージェント (AIエージェント) が発表されています。 直近ではコード生成からデバッグ、デプロイまで自律的に行う

                            LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog
                          • イチからつくるLLM(1)|ディープラーニングネイティブ

                            LLMのことを知りたいと思ってチュートリアルなどを眺めても結局transformersのAPI紹介で何も分からない。そこで「分からないなら作ればいいじゃない」、というファインマン流な勉強を始めてみました。ゼロから作ろうかと思ったのですが、ちょっと大変そうなので、このシリーズではJAXとequinoxで実装していきます。JAXは自動微分やJIT機能のついたnumpyですが、流石にそのレベルから頑張るのはしんどいので、JAXでニューラルネットワークなどを作りやすくするライブラリーであるequinoxを使います。flaxなどより薄いラッパーで、扱いやすいのが特徴です。 Llama3モデルを色々用意するのは大変なので、今回はLlama3に限定します。LlamaはMetaの開発しているLLMで、同じ構造はSarashinaやLLM-jpといった日本語LLMにも採用されているようです。私が使ったことの

                              イチからつくるLLM(1)|ディープラーニングネイティブ
                            • Qlibを使った機械学習パイプライン環境の構築 投資の取引戦略最適化と機械学習モデル作成の省力化を目指して - 株のシステムトレードをしよう - 1から始める株自動取引システムの作り方

                              概要 はじめに Qlibの試用 動作条件 使用したrequirements.txt データの取得 予測の実施 出力 図示 ソースコード バックテストでのポートフォリオ分析 リスク分析、分析モデル おわりに 概要 本記事では、Qlibを使用して、機械学習パイプライン環境を構築する第一歩について述べる。 はじめに このブログの趣旨としては、当初は「戦略作成」→「戦略検証」→「戦略稼働」→「成果の評価」→「戦略へフィードバック」といったサイクルを管理できるような自動トレーディングシステムを作ることを考えていた。 最近、すこし株取引から離れていたのだが、最近になってまたやり始めようかなと思い、色々と現在の状況を調べはじめた。 その中で、MicrosoftのリポジトリにQlibというものがあるのを見つけた。これが2020年の8月から作られたもので、現在でもメンテされており、もしかするとこれがやりたい

                                Qlibを使った機械学習パイプライン環境の構築 投資の取引戦略最適化と機械学習モデル作成の省力化を目指して - 株のシステムトレードをしよう - 1から始める株自動取引システムの作り方
                              • H200 GPU x 8基で Qwen2.5-VL-72B-Instruct を使った OCR を試してみる - ABEJA Tech Blog

                                ABEJAでデータサイエンティストをしている藤原です。 今回は、株式会社ハイレゾ様のGPUクラウドサービス「GPUSOROBAN」で H200 GPU × 8基構成のシングルノードサーバを用いて、大規模モデルを使用した検証を実施しました。本記事では、その検証でのGPUサーバの使用方法や、検証内容の一つである Qwen2.5-VL-72B-Instruct を用いたOCRの結果についてご紹介します。 highreso.jp はじめに GPUクラウドサービス「GPUSOROBAN」について GPUサーバの使い方の方針と事前準備 Qwen2.5-VL-72B-Instruct を使った OCR を試してみる 条件 実装 実行時のGPU使用状況と処理速度 検証1. 通常の文書のOCR 検証2. チャート・グラフのようなテキストで表現されていない情報のテキスト化 検証3. 複雑なレイアウトのドキュメ

                                  H200 GPU x 8基で Qwen2.5-VL-72B-Instruct を使った OCR を試してみる - ABEJA Tech Blog
                                • 機械学習パイプラインLuigiのタスク同士の関係を良い感じに可視化する方法 - ドワンゴ教育サービス開発者ブログ

                                  はじめに ドワンゴ教育事業でデータサイエンティストとして働いている中井です。 この記事では、PythonのパイプラインパッケージであるLuigiで構築したパイプラインにおいて、それを構成するタスク間の依存関係・タスクのグループ間(task_namespace で分けられる)の依存関係を良い感じに出力する方法についてお話しします。想定する読者はある程度Luigiを使ったことのある方としています。 Luigiではタスク全体の依存関係を出力できますが、大規模なタスクだともう少し荒い粒度であったり、全体のうちの一部だけ見たいといったこともあると思います。この記事を読むことでそのような荒い粒度の可視化やパイプラインの一部分に注目した可視化ができるようになります。この記事ではまずLuigiを使っていて課題に感じている部分について説明した後に、可視化対象のサンプルパイプラインについて少し触れて、そのパイ

                                    機械学習パイプラインLuigiのタスク同士の関係を良い感じに可視化する方法 - ドワンゴ教育サービス開発者ブログ
                                  • Structural pattern matching in Python 3.10

                                    September 2021 Summary: Python 3.10, which is due out in early October 2021, will include a large new language feature called structural pattern matching. This article is a critical but (hopefully) informative presentation of the feature, with examples based on real-world code. Go to: What it is | Where it shines | My code | Other projects | Problems | Wrapping up At a recent local Python meetup,

                                    • dbtのモデルとTableau上で使われているWorkbookの依存関係をexposureで表現して、データ管理を効率的に行なおう - yasuhisa's blog

                                      3行まとめ dbtのジョブが失敗した際やテーブルの廃止検討の際に、BI上のどのダッシュボードで利用されている(データリネージ)か知るのは重要です TableauのGraphQLのAPIからWorkbookとBigQuery上のモデルの埋め込みの関係を知ることができます dbtのモデルとTableau上で使われているWorkbookの依存関係をexposureとして出力するスクリプトにより、dbtのジョブの失敗やテーブルの廃止がTableauのダッシュボードに与える影響などを調べやすくなりました 3行まとめ 背景 課題: dbtのexposureとしてダッシュボードを手動で記入し続けるのは難しい 解決方法: TableauのGraphQLのAPIを使い、 dbtのexposureを自動生成する 発展的話題 背景 業務において、DWHやデータマートの生成にdbtを、BIツールとしてTablea

                                        dbtのモデルとTableau上で使われているWorkbookの依存関係をexposureで表現して、データ管理を効率的に行なおう - yasuhisa's blog
                                      • タスクとパラメータの一元管理で実現するMLOps - enechain Tech Blog

                                        はじめに 背景 タスクランナーを導入するモチベーション パラメータ管理ツールを導入するモチベーション 実現したいこと モデルや環境に依存しないタスクによるパイプラインの操作 共通部分と環境特有部分を分離したパラメータ定義 パラメータ定義の構造化 実装方法 利用するツール パラメータファイル 構造化パラメータのマージ処理の実装 おわりに はじめに enechain データサイエンスデスク エンジニアの藤村です。 enechainでは市場活性化を目的として、機械学習や最適化アルゴリズムを用いて電力や燃料などの商品に関する指標を算出し、社内外に提供しています。本稿では、これらを算出するモデルの構築・運用を効率化するために作成した、タスクランナーinvokeとパラメータ管理ツールhydraを一体化したシステムを紹介します。 背景 タスクランナーを導入するモチベーション 機械学習モデルの構築・運用に

                                          タスクとパラメータの一元管理で実現するMLOps - enechain Tech Blog
                                        • Kubeflow PipelinesからVertex Pipelinesへの移行による運用コスト削減 - ZOZO TECH BLOG

                                          こんにちは、技術本部 データシステム部 MLOpsブロックの平田(@TrsNium)です。約2年半ぶりの執筆となる今回の記事では、MLOps向け基盤を「Kubeflow Pipelines」から「Vertex Pieplines」へ移行して運用コストを削減した取り組みを紹介します。 目次 目次 はじめに Vertex Pipelinesとは Vertex Pipelinesへの移行 Vertex Pipelinesへ移行するワークフロー 1. ワークフローのKubeflow Pipelines SDK V2への移行 コンパイラのデータ型の制約が厳しくなった ContainerOp APIが非推奨になった Kubeflow PipelinesのPlaceholderを使用できなくなった 2. スケジュール実行されているワークフローへ前回実行分が終わるまでの待機処理を追加 3. Vertex

                                            Kubeflow PipelinesからVertex Pipelinesへの移行による運用コスト削減 - ZOZO TECH BLOG
                                          • はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場

                                            今回は Fusion-In-Decoder を使ってクイズに答えるモデルを作ります。以前から Wikipedia 等の外部情報を参照できるテキスト生成モデルを試してみたいと思っていました。Fusion-In-Decoder の発表は 2020 年なので少し前のモデルですが、T5 ベースで手軽に試せるサイズ感ですので、日本語で試してみましょう。 1. はじめに 今回紹介する Fusion-In-Decoder(以下、FiD )1 は Meta AI (当時は Facebook AI Research) が発表した Open Domain question Answering タスクを解くテキスト生成モデルです。 じつは、以前から外部情報を参照できるテキスト生成モデルを試してみたくて2、 Google の RETRO3 の論文を読んでたんです。 なのですが、外部情報のサイズ感が 1000 B

                                              はじめての自然言語処理 Fusion-In-Decoder でクイズに答えるモデルを作る | オブジェクトの広場
                                            • CloudFormation一撃で作るAWS料金通知ツール(Email/Slack/LINE対応) | DevelopersIO

                                              以前本記事で使用していたLINE Notifyが2025/3/31にサービス終了します。 代わりにLINE Messaging APIへ通知するよう構築手順及びCloudFormationテンプレートを更新したので、今後はこちらをご利用ください。 https://developers.line.biz/ja/news/2024/10/07/line-notify-will-be-discontinued/ こんにちは、つくぼし(tsukuboshi0755)です! 以前以下のブログで、利用しているAWS料金を毎日LINEに通知するツールを構築しました。 上記ブログは様々な方々から大きな反響を頂いた一方で、以下のような課題もありました。 AWS SAMの利用を前提とするため、ローカル開発環境の構築が別途必要 通知間隔として毎日しか指定できない 通知先としてLINEしか指定できない LINE

                                                CloudFormation一撃で作るAWS料金通知ツール(Email/Slack/LINE対応) | DevelopersIO
                                              • LangChain社LLMOpsツール「LangSmith」を触ってみた(詳細解説つき) - ABEJA Tech Blog

                                                こんにちは!株式会社 ABEJA で ABEJA Platform 開発を行っている坂井(GitHub : @Yagami360)です。LangChain 使えば、RAG [Retrieval Augment Generation] などを活用した LLM アプリケーションも簡単に作成できるので大変便利ですよね。そんな LangChain を開発している LangChain 社から LLMOps ツール(*1)である LangSmith が登場しているので調査してみました。昨今 ChatGPT 等の LLM 技術の発展に伴い、LLM を実際のアプリケーション開発や運用に適用する際に MLOps から派生した LLMOps という概念が有益になってきています。LangSmith はそのような LLMOps において、LLM アプリケーションの運用向け LLMOps 機能に焦点を絞っており、ま

                                                  LangChain社LLMOpsツール「LangSmith」を触ってみた(詳細解説つき) - ABEJA Tech Blog
                                                • 【Python】PyTorch で作る Vertical Federated Learning - ENGINEERING BLOG ドコモ開発者ブログ

                                                  NTTドコモ R&D Advent Calendar 2022 の1日目の記事です。 井上と申します。アメリカのシリコンバレーにあるドコモの子会社,DOCOMO Innovations, Inc. (DII) でシニアデータサイエンティストとして機械学習の研究開発に従事しています。 現在,DII は Amazon Web Services, Inc. とパートナーシップを組み,Federated Learning (連合学習, FL) の開発に取り組んでいます。 AWS Partner Network (APN) Blog の記事もご覧ください。 本記事は,FL の中でも,特に Vertical Federated Learning (VFL) を PyTorch を用いて作り上げていくチュートリアルです。 なお,本記事末尾に職場の紹介を載せていますので「シリコンバレーとか DII ってど

                                                    【Python】PyTorch で作る Vertical Federated Learning - ENGINEERING BLOG ドコモ開発者ブログ
                                                  • はじめての自然言語処理 spaCy 3.0 で Transformer を利用する | オブジェクトの広場

                                                    今更ですが今年の2月に spaCy 3.0 が公開されました。 3.0 で導入された新機能の中で目玉と言えるのは、やはり Hugging Face Transformers (以下、単にTransformers) のサポートや PyTorch, Tensorflow との連携になるでしょう。今回はその辺りを実際に学習を動かしながら紹介したいと思います。 1. はじめに 今回は今年の2月に公開された spaCy 3.0 の話です。 spaCy は第4回でも紹介しましたが、研究者向けというよりは自然言語処理アプリ開発者向けのオープンソース自然言語処理ライブラリになります。日本語を含めた様々な言語の学習済みモデルが存在しており、 spaCy をインストールして、学習済みモデルをダウンロードするだけで、分かち書き、品詞や依存関係の推定、単語や文の類似度の判定など様々な機能を使用することができます。

                                                      はじめての自然言語処理 spaCy 3.0 で Transformer を利用する | オブジェクトの広場
                                                    • データカタログにConnected SheetsやLooker Studioの情報を取り込んでレポートのデータソースを追跡する - LayerX エンジニアブログ

                                                      はじめに こんにちは!バクラク事業部 機械学習・データ部 データチームの@TrsNiumです。 弊社では、データの意味やデータの質、データの利活用を一元的に管理することを目的として、データカタログソリューションの一種であるOpenMetadataを導入しました。OpenMetadataを利用することで、様々な種類のデータベースやBI、CRMと連携し、データの管理と可視化を効率化しています。 弊社では主にBIツールとしてLooker Studioを使用しています。また、Google SheetsはConnected Sheetsの機能を使い、BigQuery上に構築されたデータ基盤のデータを用いて簡易的にデータ分析や可視化を行うツールとして利用しています。しかし、これらのツールはOpenMetadataのビルトイン機能ではサポートされていませんでした。そのため、データ変更時の影響範囲の把握や

                                                        データカタログにConnected SheetsやLooker Studioの情報を取り込んでレポートのデータソースを追跡する - LayerX エンジニアブログ
                                                      • 日本語埋め込みモデルRuliを使ったBM42 on Elasticsearchと形態素解析器Sudachiによるトークン矯正 - エムスリーテックブログ

                                                        こちらはエムスリー Advent Calendar 2024 1日目の記事です。 エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。 今回はQdrantが開発した新しいスコアリングアルゴリズムであるBM42を簡単に紹介し、それをElasticsearch上で構築する方法とその所感をお話しします。さらに形態素解析器のSudachiを使って類似語展開やトークン修正を行ない、BM42の精度を矯正する方法を試したのでその紹介をします。 BM42の紹介に関してはQdrantの記事が最も詳しいですが、このブログでも導入として簡単に紹介します。 qdrant.tech BM25の弱点 BM42とは BM42をElassticsearchで動かす Sudachiによる矯正 モデルによっては意図しないトークンが生成される問題 表記揺れ、シノ

                                                          日本語埋め込みモデルRuliを使ったBM42 on Elasticsearchと形態素解析器Sudachiによるトークン矯正 - エムスリーテックブログ
                                                        • Velja

                                                          Open links in a specific browser or a matching native app. Easily switch between browsers. In-depth review of Velja. Trusted by almost 130K users. You may also like my Default Browser app. Example use-cases Use Safari as your primary browser but open Google Meet links in Chrome Open links to figma.com directly in the Figma desktop app Open links to the internal company website in Firefox Open Zoom

                                                            Velja
                                                          • ChatVectorで新モデル作って評価して遊ぶヤツ、自分もやりたい

                                                            最近、一部のローカルLLM勢のあいだでChatVectorで遊ぶのが流行っている。 ChatVectorとは何か?というとこちらの論文で発表された技術だ。 [2310.04799] Chat Vector: A Simple Approach to Equip LLMs with Instruction Following and Model Alignment in New Languages (arxiv.org) こちらの解説記事が分かりやすい。 Chat Vectorを使って日本語LLMをチャットモデルに改造する – Qiita 要するに、ChatVectorとは指示チューニングでチャット能力を獲得したモデルのウエイトから、ベースになったモデルのウエイトを差し引いた差分の事である。 そしてChatVectorを別のモデルのウエイトに加算すれば、そのモデルにチャット能力を付与する事が

                                                              ChatVectorで新モデル作って評価して遊ぶヤツ、自分もやりたい
                                                            • 【論文詳解】RestGPT: ユーザ指示からRESTful APIを実行する新たなLLMエージェント

                                                              はじめに 初めまして、株式会社Carnotでインターンをしている長谷川と申します。 Carnotでは、LLMを活用し日々の業務フローの効率化や自動化をするためのソリューション「Promptflow」の開発を行っています。 上記のようなワークフローを作成する際には、SlackやGmail、Notionなど各サービスのAPIを連携させていく必要があります。しかし、そのような開発にはプログラミングの知識が必須で、非エンジニアにとってAPIを用いたシステムを作成することは難しいと思われます。そこで、今回は言語のみの指示から複数のAPIを呼び出すことが可能なRestGPTという手法を調査しました。 例えば音楽配信サービスを使う中で「YOASOBIが出した最新のアルバムを自分のプレイリストに追加する」という作業をしたい時、これを自分で行うのは面倒である上、コードを書いて自動化するのも非エンジニアにとっ

                                                                【論文詳解】RestGPT: ユーザ指示からRESTful APIを実行する新たなLLMエージェント
                                                              • LangChainとOpenAI APIを組み合わせて、文脈を考慮して会話できるSlack Botを作った話 - コネヒト開発者ブログ

                                                                みなさんこんにちは。AI・検索チームのたかぱい(@takapy0210)です。 最近猫を飼い始めました。名前は「きぬ」ちゃんです。名前からして可愛いのが伝わると思うのですが、とっても可愛いです。 さて、昨今大規模言語モデル(Large Language Model: LLM)の発展により業界では日々新しい話題が飛び交っています。例に漏れず弊社内でもLLMを用いた施策のPoCなどを進めていっている段階です。 今回は社内向けの施策として、Open AIのAPIを用いたSlack Botを開発した話をしようと思います。 いわゆる「ChatGPT × Slack Bot」の開発記事などは多く出回っていると思いますが、今回はLangChain と組み合わせることで、Web版のChat GPTのように過去の会話を記憶させながらSlack上でAIとコミュニケーションさせる、という部分にフォーカスを当てな

                                                                  LangChainとOpenAI APIを組み合わせて、文脈を考慮して会話できるSlack Botを作った話 - コネヒト開発者ブログ
                                                                • はじめての自然言語処理 DeepSpeed-Chat による RLHF の紹介 | オブジェクトの広場

                                                                  今回は DeepSpeed-Chat による RLHF のご紹介です。正直、データセットや計算資源の都合もあり、とりあえず動かしてみました!的な話にはなりますが、RLHF の効果が実際に確認できるか見てみたいと思います。 1. はじめに 今回は DeepSpeed-Chat1 を使って RLHF を試してみたいと思います。RLHF は Reinforcement Learning from Human Feedback の略で文字通り「人からのフィードバックを用いた強化学習」ということですね。OpenAI が InstructGPT(ChatGPT の元になったモデル)2 で使ったことで注目された手法になります。 LLM がらみで何か記事にしたいと思いつつ、日々新たな LLM が発表されている昨今に、隔月&内容が実時間から月単位で遅れ気味wの本連載です。 「どうしたもんかな。。。」と悩みに

                                                                    はじめての自然言語処理 DeepSpeed-Chat による RLHF の紹介 | オブジェクトの広場
                                                                  • 【GROMACS】Umbrella samplingによるMD simulation 【In silico創薬】【SMD】 - LabCode

                                                                    Windows 11 Home, 13th Gen Intel(R) Core(TM) i7-13700, 64 ビット オペレーティング システム、x64 ベース プロセッサ, メモリ:32GB Umbrella Samplingの概要と目的Umbrella Samplingは、分子がめったに起こさないような状態変化(たとえば、タンパク質同士が離れるなど)を詳しく調べるための計算手法です。通常の分子動力学(MD)では、エネルギー的に安定な状態にとどまりやすく、重要な変化が起こる確率が低いため、十分な情報が得られません。 たとえば、タンパク質AとBがくっついている状態から、少しずつ離れていく様子を観察したいとき、まずAとBを少しずつ引き離すSteered Molecular Dynamics(SMD)などのシミュレーションで、さまざまな距離の構造を取得します。その中から、0.5nm、0.7

                                                                    • Tool Calling with LangChain

                                                                      TLDR: We are introducing a new tool_calls attribute on AIMessage. More and more LLM providers are exposing API’s for reliable tool calling. The goal with the new attribute is to provide a standard interface for interacting with tool invocations. This is fully backwards compatible and is supported on all models that have native tool-calling support. In order to access these latest features you will

                                                                        Tool Calling with LangChain
                                                                      • Augmented Coding: Beyond the Vibes

                                                                        I recently came to a good stopping spot on an ambitious project to build a B+ Tree library using augmented coding. The result is BPlusTree3 - a performance-competitive, maybe-production-ready implementation in Rust & Python. I sat down with a friend to tell my story and reflect on what it reveals about the future of programming in the GenAI era. If you want to support my work, join a community wor

                                                                          Augmented Coding: Beyond the Vibes
                                                                        • AWS公式のECSハンズオンがとても良かった!! - Qiita

                                                                          はじめに お疲れ様です。矢儀 @yuki_ink です。 こちらのAWS公式ハンズオンをやってみました。 ECSとFargate/EC2を利用した環境構築から、CI/CDパイプラインを利用したデプロイまで、一通り体験できる素晴らしいハンズオンでした。 次のようなみなさんにおすすめです。 ECSを知識として知ってはいるが、実際に触ったことがない コンテナの何が優れているのか、実感を持っては理解できない CI/CDパイプラインでコンテナをデプロイしてみたい ハンズオンで構築する環境の構成イメージはこちら。 1. VS Code Serverの構築 このハンズオンでは、開発環境として Visual Studio Code Server (VS Code Server) を利用するとのことで、まず、CloudFormationでVS Code Serverを構築していきます。 ハンズオンページの

                                                                            AWS公式のECSハンズオンがとても良かった!! - Qiita
                                                                          • [Ansible] そのtag設定、想定通りに動いてますか? (継承機能とその実装を確認する) - zaki work log

                                                                            playbook内のtask定義にtagを設定しておくことで、指定tagのtaskのみ実行したり、逆に指定tagのtaskを除外してansible-playbookを実行することができます。 開発中のtaskのみピンポイントで実行したい場合や、逆に、共有のDBのデータを更新したりするtaskはほかのユーザーやチームと調整してからでないと実行が難しかったり、Blue-Greenデプロイメントの実装で環境Aの機能をオフにしてもう片方の環境Bをオンにするような処理だけど開発中は環境Bだけ確認したかったり、大量データのダウンロードや冪等の確認を伴い処理に時間がかかるため開発中は実行したくないなど特定のtaskは実行したくない場合に利用できます。 また、特殊tagとして、常に実行するalwaysと実行しないneverというtagが予約語として用意されています。 neverは特に「通常は実行したくない

                                                                              [Ansible] そのtag設定、想定通りに動いてますか? (継承機能とその実装を確認する) - zaki work log
                                                                            • Pythonで簡単DB - Qiita

                                                                              pythonでsqlite3データベースを簡単に使う SQLとかわかんないよみたいな方だってデータベースに触れたら世界が変わるかも知れない。わかんないけど。 ほとんどの場合ざっくりと簡単なクエリ発行で事足りる場合が多いので、SQLに詳しい方だって多分楽できるかも。 DBクラスとDBwrapperクラス ほぼ素に近い状態でsqliteを使うDBクラスと、そのDBクラスを継承して簡単に使えるファンクションを追加したのがDBwrapperクラス。 DBwrapperクラスはDBクラスのファンクションを全部使えるのでとりあえずDBwrapperクラスを取り込んで使えば便利。 たとえば dict型でデータを作って set とか読んでやればDBにデータを挿入・更新できたり get をforで回してやれば1行づつデータが取り出せる。 データの件数も count で取り出せるぞ、手軽だね。 詳しくは以下の

                                                                                Pythonで簡単DB - Qiita
                                                                              • 日本語埋め込みモデルRuriを使ったBM42 on Elasticsearchと形態素解析器Sudachiによるトークン矯正 - エムスリーテックブログ

                                                                                こちらはエムスリー Advent Calendar 2024 1日目の記事です。 エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。 今回はQdrantが開発した新しいスコアリングアルゴリズムであるBM42を簡単に紹介し、それをElasticsearch上で構築する方法とその所感をお話しします。さらに形態素解析器のSudachiを使って類似語展開やトークン修正を行ない、BM42の精度を矯正する方法を試したのでその紹介をします。 BM42の紹介に関してはQdrantの記事が最も詳しいですが、このブログでも導入として簡単に紹介します。 qdrant.tech BM25の弱点 BM42とは BM42をElassticsearchで動かす Sudachiによる矯正 モデルによっては意図しないトークンが生成される問題 表記揺れ、シノ

                                                                                  日本語埋め込みモデルRuriを使ったBM42 on Elasticsearchと形態素解析器Sudachiによるトークン矯正 - エムスリーテックブログ
                                                                                • EC2インスタンスのユーザーデータ内のdnfコマンドやyumコマンドが失敗する場合の緩和策を考えてみた | DevelopersIO

                                                                                  ユーザーデータでパッケージのインストールをしようとすると失敗するんだが こんにちは、のんピ(@non____97)です。 皆さんはEC2インスタンスのユーザーデータでdnfコマンドやyumコマンドが失敗したことはありますか? 私はあります。 具体的にはユーザーデータでdnf upgradeやdnf install パッケージ名を実行すると、以下のようにRPM: error: can't create transaction lock on /var/lib/rpm/.rpm.lock (Resource temporarily unavailable)とログが出力されます。 $ dnf upgrade -y --releasever=latest Amazon Linux 2023 repository 30 MB/s | 23 MB 00:00 Amazon Linux 2023 Ker

                                                                                    EC2インスタンスのユーザーデータ内のdnfコマンドやyumコマンドが失敗する場合の緩和策を考えてみた | DevelopersIO