並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 409件

新着順 人気順

python return if not none elseの検索結果1 - 40 件 / 409件

  • 日本のウェブデザインの特異な事例

    sabrinas.spaceより。 8週間もかからなかったはずのプロジェクト 日本のウェブデザインはどう違うのか? 2013年のRandomwireのブログ投稿で、著者(David)は、日本のデザインの興味深い相違点を強調しました。日本人はミニマリストのライフスタイルで海外に知られていますが、ウェブサイトは奇妙なほどマキシマリストです。ページには様々な明るい色(3色デザイン原則を破っている)、小さな画像、そして多くのテキストが使われています。2022年11月に撮影されたこれらのスクリーンショットで、自分の目で確かめて下さい。 ブログ投稿には、文化的専門家、デザイナー仲間、そして不満を抱く市民によって支持されている、考えられる理由がいくつか挙げられていました。 この理論が今でも正しいのか、また、もっと定量的なアプローチが可能なのか気になったのでやってみました。 私が見つけたもの 各国の最も人

      日本のウェブデザインの特異な事例
    • 退屈なことはPythonにやらせよう 第2版

      一歩先行くハイパフォーマンスなビジネスパーソンからの圧倒的な支持を獲得し、自作RPA本の草分けとして大ヒットしたベストセラー書の改訂版。劇的な「業務効率化」「コスト削減」「生産性向上」を達成するには、単純な繰り返し作業の自動化は必須です。本書ではWordやExcel、PDF文書の一括処理、Webサイトからのダウンロード、メールやSMSの送受信、画像処理、GUI操作といった日常業務でよく直面する面倒で退屈な作業を、Pythonと豊富なモジュールを使って自動化します。今回の改訂では、GmailやGoogleスプレッドシートの操作、Pythonと各種モジュールの最新版への対応、演習等を増補しています。日本語版では、PyInstallerによるEXEファイルの作成方法を巻末付録として収録しました。 関連ファイル サンプルコード 正誤表 書籍発行後に気づいた誤植や更新された情報を掲載しています。お手

        退屈なことはPythonにやらせよう 第2版
      • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

        いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

          日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
        • OpenAI API の ファインチューニングガイド|npaka

          1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

            OpenAI API の ファインチューニングガイド|npaka
          • とほほのHaskell入門 - とほほのWWW入門

            概要 Haskellとは 関数型言語 純粋関数型言語 インストール Haskell Stack Hello world 基本 予約語 コメント ブロック レイアウト 入出力 型 変数 数値 文字(Char) 文字列(String) エスケープシーケンス リスト([...]) タプル((...)) 演算子 関数 演算子定義 再帰関数 ラムダ式 パターンマッチ ガード条件 関数合成(.) 引数補足(@) 制御構文 do文 let文 if文 case文 where文 import文 ループ データ型 データ型(列挙型) データ型(タプル型) データ型(直和型) 新型定義 (newtype) 型シノニム (type) 型クラス (class) メイビー(Maybe) ファンクタ(Functor) アプリケイティブ(Applicative) モナド(Monad) モジュール (module) 高階関

            • MCPでLLMに行動させる - Terraformを例とした tfmcp の紹介 - じゃあ、おうちで学べる

              はじめに こんにちは!今回は、私が最近開発した tfmcp というツールを紹介します。これは Terraform を LLM(大規模言語モデル)から操作できるようにするツールで、Model Context Protocol (MCP) を活用しています。 github.com このブログが良ければ読者になったり、GitHub リポジトリにStarをいただけると開発の励みになります。nwiizoをフォロワーしてくれるのもありがたいです。より良いツール開発のためのフィードバックもお待ちしています! MCP とは何か? 記事を始める前に、まず MCP (Model Context Protocol) について簡単に説明しましょう。MCP についてより詳しい情報は、公式ドキュメント modelcontextprotocol.io や Anthropic の Model Context Protoc

                MCPでLLMに行動させる - Terraformを例とした tfmcp の紹介 - じゃあ、おうちで学べる
              • 浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記

                お近づきになりたい人向けシリーズです。 いろいろなトピックを詰め込みましたが、「これら全部を知らないといけない」のようなつもりではなく、いろいろなことを知るきっかけになったらいいなという気持ちなので、あまり身構えずにちょっとずつ読んでもらえたらうれしい気がします。 まえがき 予備知識 規格 用語 精度という語について 記法 表現について 有限値の表現について エンコードについて 丸めについて よくある誤差や勘違いの例 0.1 = 1 / 10? 0.1 + 0.2 = 0.3? 整数の誤差 Rump’s Example 基本的な誤差評価 用語に関して 実数の丸め 有理数の丸め 基本演算の丸め 差について 複数回の演算 補題たち 桁落ちについて Re: Rump’s example 融合積和 数学関数に関する式の計算 誤差の削減に関して 総和計算 数学関数の精度について 比較演算について 雑

                  浮動小数点型の算術とお近づきになりたい人向けの記事 - えびちゃんの日記
                • Python×株式投資|仕事終わりでも投資を諦めない。スクリーニング結果を自動通知するBotを作る(中編) - Qiita

                  素人が生成AI無料期間中に作る!毎日自動で銘柄スクリーニング&X自動通知Bot これまでの経緯 本記事は、Pythonによる株式スクリーニング自動化・実践の続編です。これまでの背景や検証の流れは、以下の記事をご確認ください。 現在構築中のスクリーニングモデルの全体像と今回やること 生成AI無料期間にスクリーニング結果自動通知botを作り始めた 今回のモデルのスクリーニング速度を100倍向上した方法 yfinance由来の軽量データセット構築 今回のモデルの改善点 今回のスクリーニングモデルの精度 相場状況を簡易的に数値化する 財務スクリーニング *2025年7月7日 リンク修正しました。お知らせいただきありがとうございました。 はじめに 毎日自動で銘柄スクリーニングの結果を知れたら、仕事が終わった後の疲れたの脳でも、めんどくさがらずに、お布団に吸引されることもなく、定期的に投資が続けられる

                    Python×株式投資|仕事終わりでも投資を諦めない。スクリーニング結果を自動通知するBotを作る(中編) - Qiita
                  • 【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい

                    はじめに 対象イベント 読み方、使い方 Remote Code Execution(RCE) 親ディレクトリ指定によるopen_basedirのバイパス PHP-FPMのTCPソケット接続によるopen_basedirとdisable_functionsのバイパス JavaのRuntime.execでシェルを実行 Cross-Site Scripting(XSS) nginx環境でHTTPステータスコードが操作できる場合にCSPヘッダーを無効化 GoogleのClosureLibraryサニタイザーのXSS脆弱性 WebのProxy機能を介したService Workerの登録 括弧を使わないXSS /記号を使用せずに遷移先URLを指定 SOME(Same Origin Method Execution)を利用してdocument.writeを順次実行 SQL Injection MySQ

                      【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい
                    • 話題のローコードツール「Dify」で生成AIアプリを作ってみよう! - Qiita

                      Difyって何? 少し前から話題の、プログラミングなしで生成AIアプリケーションを開発できるOSSです。 「Dify すごい」 でSNSを検索すると、驚き屋さんがみんな驚いています。このゴールデンウィークはAmazon BedrockとDifyの話題でもちきりでしたね。 元々は「GPTビルダーのOSS版ね。はい解散」という感じだったのですが、最近追加された「ワークフロー」機能がすごく便利のようです。 ちょっとしたアプリなら、ローコードで簡単に作れてしまうとのこと。 最近は自分でPCやサーバー準備して動かさなくても、SaaS版が公式から準備されたようです。無料プランもあります。 やってみた サインアップ 公式サイト右上の「Get Started」からサインアップします。 GitHub連携すると、いきなり開発画面に辿り着きました!いいUX。 「(いち?)から作成」よりワークフローを作ってみまし

                        話題のローコードツール「Dify」で生成AIアプリを作ってみよう! - Qiita
                      • Pythonで理解するMCP(Model Context Protocol) | gihyo.jp

                        動作環境 Python 3.12 ライブラリの使用バージョン gradio 5.34.2 anthropic 0.54.0 mcp 1.9.4 python-dotenv 1.1.0 仮想環境とライブラリインストール % cd mcp-host-with-gradio % python3 -m venv venv % source venv/bin/activate (venv) % pip install gradio anthropic mcp dotenv .envファイルの設定 AnthropicのAPIキーが必要です。APIキーの作成は以下を参考にしてください。APIの利用には料金がかかりますが、API従量課金であれば5ドルから始めることが可能です。 Claudeを使い始める -Anthropic .env ANTHROPIC_API_KEY=xxxxxxxxxxxxxxxxxx

                          Pythonで理解するMCP(Model Context Protocol) | gihyo.jp
                        • Cline+ローカル版DeepSeek R1でAIコーディングを使い放題にする(高スペックマシン向け)|しぴちゃん

                          しぴぴぴ! Vtuberのしぴちゃん (https://www.youtube.com/@CP-chan) です。 配信ではゲームの話しかしてませんが、今回はAIに関する連載ということでローカル環境(手元のマシン)で動かせるAIの話をしていきます。 第一弾 DeepSeek R1をほぼ準備なしからローカルGPUで動かす 第二弾 本記事 Cline+ローカル版DeepSeek R1でAIコーディングを使い放題にする(高スペックマシン向け) 第三弾 GPUなしでも動く!ローカルLLMとllama.vscodeでコード補完 今回は連載の第二弾です。 LLMをローカルにインストールする大きなメリットとして、API制限や従量課金から解放されてLLMが「使い放題」になるという点があります。 DeepSeekは一世代前のV3ならWebで使ってもそんなに高くないのですが (https://api-docs

                            Cline+ローカル版DeepSeek R1でAIコーディングを使い放題にする(高スペックマシン向け)|しぴちゃん
                          • Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog

                            はじめに はじめまして。Analyticsチームの清水です。 2024年12月に入社しまして、約4ヶ月が経過しました。今回が初めてのテックブログになります。 ▼先日、入社エントリも公開しました。 本稿のテーマは、自由記述のテキストをラベリングして分類する分析タスクに対し、Geminiと共に取り組んで分かったことの共有です。 私は生成AIをそれほどたくさん使った経験があるわけではないので、これが最良の使い方というわけではないと思いますが、どのようにプロンプトを組み立て、どう効率的に分析を進められたのかを可能な限りリアルに書いていきます。 ※今回利用したモデルは、Gemini 2.5 Proです。 はじめに Geminiを活用したデータ分析の進め方 フェーズ0: アプローチの模索 - Notebook LMや教師なし学習の試行 フェーズ1: データ理解とラベルチェック - コード生成と探索的分

                              Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog
                            • N番目の素数を求める - すぎゃーんメモ

                              SNSなどで話題になっていたので調べてみたら勉強になったのでメモ。 環境 Pythonでの実装例 例1 例2 例3 エラトステネスの篩 Rustでの実装例 試し割り法 エラトステネスの篩 アトキンの篩 おまけ: GMP Benchmark 高速化のテクニック 上限個数を見積もる Wheel factorization オチ Repository References 環境 手元のMacBook Pro 13-inchの開発機で実験した。 2.8 GHz Intel Core i7 16 GB 2133 MHz LPDDR3 Pythonでの実装例 例1 最も単純に「2以上p未満のすべての数で割ってみて余りが0にならなかったら素数」とする、brute force 的なアプローチ。 import cProfile import io import pstats import sys def m

                                N番目の素数を求める - すぎゃーんメモ
                              • LangChainを使わない - ABEJA Tech Blog

                                TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                                  LangChainを使わない - ABEJA Tech Blog
                                • とほほのRust入門 - とほほのWWW入門

                                  Rustとは インストール Hello world Cargoプロジェクト キーワード コメント(//) 値 変数・定数(let, mut, const) 型 基本の型(bool, i16, char, str...) 型変換(as) 構造体(struct) 共用体(union) 列挙型(enum) タプル(tup) 配列(array) ベクタ(vec) ハッシュマップ(HashMap) 文字列(&str, String) 演算子(+ - ...) ヒープ領域(Box) スライス(&var[n..m]) 関数(fn) クロージャー(|...|{...}) マクロ(macro_rules!) 制御構文 条件分岐(if) 繰り返し(while) 繰り返し(for) ループ(loop) ループ制御(break, continue) マッチ(match) インプリメンテーション(impl) トレイ

                                  • MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁

                                    デジタル庁プロダクトマネージャーユニットの土岐竜一です。事業者の手続システム総括班で、Jグランツを含む事業者向けシステムなどを担当しています。 この記事では、デジタル庁が運用する補助金電子申請システム「Jグランツ」のAPIを、Anthropic社が提唱するModel Context Protocol(MCP) によりラッピングし、LLMから利用可能なシステムのサンプル設計および実装について説明します。 具体的には、Pythonで簡単に実装できるFastMCPフレームワークを利用し、Jグランツの補助金検索や詳細の取得などの実用的な機能を備えたMCPサーバーを例として実装します。なお、本記事におけるコードはGitHubよりダウンロード可能です。 本実装例で実現できること今回紹介するMCPサーバーを利用すると、LLM(Claudeなど)を通じて、以下のような自然言語によるJグランツの補助金検索や

                                      MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁
                                    • PythonでDDDやってみた💪 - techtekt

                                      はじめに 実行環境 ディレクトリ構造 app migrations/model pyproject.toml ソースコードと簡単な解説 app/core app/core/abstract app/core/decorator app/core/exception app/core/interface app/core/middleware app/core/mixin app/ddd app/ddd/application app/ddd/application/schema app/ddd/application/schema/studnet app/ddd/application/usecase app/ddd/application/usecase/student app/ddd/domain app/ddd/domain/student app/ddd/infra app/ddd

                                        PythonでDDDやってみた💪 - techtekt
                                      • 【Amazon Bedrock】AWSサービスのみを使ったシンプル構成のRAGアプリを作ってみた - NRIネットコムBlog

                                        はじめに RAGとは 構成図 作成リソース Lambda 1. PDFから文書抽出&Embedding取得Lambda 2. 回答作成用Lambda AWS SAM テンプレート Streamlit 動作確認 まとめ はじめに こんにちは堤です。 Amazon BedrockがGAとなり、AWS内で完結してLLMアプリケーションを構築できるようになりました。 試しにRAGアプリケーションを作成してみようと思いましたが、現状AWSでRetrievalするデータソースを作成しようとすると、Amazon OpenSearch Serverless やAmazon Kendraを使用するしかありません。これらのサービスを使うのはコストもそれなりにかかり少しハードルが高いなーと思っていたら以下のブログを見つけました。 aws.amazon.com 構成図を見ると分かるように、S3にembedding

                                          【Amazon Bedrock】AWSサービスのみを使ったシンプル構成のRAGアプリを作ってみた - NRIネットコムBlog
                                        • Building a tiny Linux from scratch

                                          Last week, I built a tiny Linux system from scratch, and booted it on my laptop! Here’s what it looked like: Let me tell you how I got there. I wanted to learn more about how the Linux kernel works, and what’s involved in booting it. So I set myself the goal to cobble together the bare neccessities required to boot into a working shell. In the end, I had a tiny Linux system with a size of 2.5 MB,

                                            Building a tiny Linux from scratch
                                          • Software Design連載 2021年12月号 リリース作業とエラー追跡の改善 - MonotaRO Tech Blog

                                            新年あけましておめでとうございます。モノタロウでエンジニアをしております大西です。本年もよろしくお願いいたします。 本年もMonotaRO Tech Blogでは社内の様々な取り組みを定期的に更新して参りますので、お時間の空いた際にお読み頂けると嬉しく思います。皆様のお役に少しでも立つことができれば幸いです。 今回は、リリースにかかる時間の増加や、リリースに関する作業の属人化を体制変更によって解消した経緯と、大規模な開発体制におけるリリース作業や監視業務でのエラーやアラートの管理方法についてご紹介します。 本記事の初出は、 Software Design2021年12月号「Pythonモダン化計画(第5回)」になります。 過去の連載記事は以下を参照ください。 第1回 Software Design連載 2021年8月号 Python製のレガシー&大規模システムをどうリファクタリングするか

                                              Software Design連載 2021年12月号 リリース作業とエラー追跡の改善 - MonotaRO Tech Blog
                                            • OpenAI API ドキュメント 日本語訳|#2 GET STARTED 後編|ゑぐみかるちゃあ

                                              OpenAI API ドキュメントの日本語訳をこちらでまとめます。文字量の多いドキュメントなので、セクションごとに記事を分割しています。 今回は「GET STARTED 」のセクションからLibraries 、Models、TutorialsそしてUsage policiesを抜粋した後編です。 基本 DeepLで翻訳して、気になるところだけ書き換えています(ほぼ気になるところがないのが、DeepLのすごいところ)。原文との突き合わせができるようにはじめに原文を入れてますので、間違いなど見つけられましたら、ぜひご指摘ください。ご指摘箇所は随時反映させていただきます。 原文のリンクが有効になってますので、それぞれ必要な場合は原文リンクの方を参照ください。 前回のおさらいはこちら Python library|Python ライブラリWe provide a Python library, w

                                                OpenAI API ドキュメント 日本語訳|#2 GET STARTED 後編|ゑぐみかるちゃあ
                                              • Pythonプロジェクトを快適にするために導入したツールとその設定 | DevelopersIO

                                                start: if [ -n "${ENV}" ]; then \ .venv/bin/dotenv --file ${ENV} run -- .venv/bin/python src/main.py; \ lint: poetry run pysen run lint lint-fix: poetry run pysen run format && \ poetry run pysen run lint test-unit: poetry run pytest install-dev: poetry install install: poetry install --no-dev 本番環境のみ入れたいパッケージがある場合 IoT開発等では、開発時はMacで本番はラズパイみたいなケースの場合、アーキテクチャ依存で追加できないパッケージがあったりします。 例えばRPi.GPIOは、GPIOが

                                                  Pythonプロジェクトを快適にするために導入したツールとその設定 | DevelopersIO
                                                • Microsoft Power Automate DesktopでRPAを実現してみる | 🌴 officeの杜 🥥

                                                  自分自身の個人的意見としては、エンドユーザコンピューティングは大いに結構だと思ってるけれど、一方で日本でジリジリと熱さが消えつつある国内の有象無象のRPAについては滅んだほうが良いとも思ってる。理由は後述するとして、本日良いニュースが発表されました。Power Automate Desktopについて追加費用無し無償で利用可能になるとのこと。これは既にあるMicrosoft365のEnterpriseプランなどに標準で利用できてるPower Automateのデスクトップ版のようで、Windows10に標準でついてくるようになるとのこと。 ということで、現時点のMicrosoft365で使えてるPower Automate Desktopを使ってみて、どんな感じなのか?またリリース後にその違いなどをここに記述していこうかなと思っています。また、Seleniumベースのウェブ自動化についても

                                                    Microsoft Power Automate DesktopでRPAを実現してみる | 🌴 officeの杜 🥥
                                                  • Amazon CodeWhispererでどの程度コーディングが効率化できそうか試してみた - Taste of Tech Topics

                                                    ここのところ気温も暖かくなり、外に出かけるのが楽しみになってきた、カメラ好き機械学習エンジニアの@yktm31です。 いま世間を賑わせている生成系AI、ChatGPTは私にとって欠かせないものになりました。 そんな中つい先日、AWSから「Amazon CodeWhisperer」がGAになりました。 といことで、さっそく試してみました。 目次 概要 特徴 サポート サポートされるプログラミング言語 サポートされるIDE サポートされる自然言語 使い方 利用開始方法 基本操作 Lambdaで、DynamoDBのレコードを取得する処理と、そのユニットテストを書いてみた コード参照(Code references)を試してみる セキュリティスキャンを試してみる ドキュメントからわかったこと 安全性・セキュリティ ProfessionalとIndividualの違い 料金と制限 オプトアウト方法

                                                      Amazon CodeWhispererでどの程度コーディングが効率化できそうか試してみた - Taste of Tech Topics
                                                    • GPT-5 の新パラメータとツール|npaka

                                                      以下の記事が面白かったので、簡単にまとめました。 ・GPT-5 New Params and Tools - OpenAI Cookbook 1. verbosity1-1. 概要「verbosity」は、出力トークン数を調節できます。 ・low : 簡潔なUX、簡潔な文章 ・medium (デフォルト) : バランスの取れた詳細 ・high : 詳細な情報。監査、教育、引き継ぎに最適 1-2. verbosityの効果の確認プロンプトを一定に保ったまま、「verbosity」を変更することで、効果を確認できます。 response = client.responses.create( model="gpt-5", input="人生、宇宙、そして万物に関する究極の問いに対する答えは何でしょうか?", text={ "verbosity": "low" } ) print(response

                                                        GPT-5 の新パラメータとツール|npaka
                                                      • StorybookとPlaywrightがもたらす画期的なUIテスト

                                                        はじめに StorybookとPlaywrightを連携してテストすることで、思っていた以上に良い開発体験が得られたので紹介します。 今回の記事で紹介するテストは以下のリポジトリで公開しています。 具体的には以下の点が最高でした。 独立したコンポーネント開発 Storybookを利用することで、UIコンポーネントを独立して開発・テストできます。これにより、コンポーネントの再利用性が向上し、効率的な開発が可能になります。 シナリオベースのテスト Playwrightを使ってシナリオベースのテストを実行できます。これにより、ユーザーの実際の操作に近い状況でのテストが可能となり、アプリケーションの品質を高めることができます。 クロスブラウザテストの容易さ Playwrightは、複数のブラウザでの自動テストをサポートしています。これにより、異なるブラウザでの動作検証が容易になり、互換性の問題を効

                                                          StorybookとPlaywrightがもたらす画期的なUIテスト
                                                        • DuckDB でハイブリッド検索

                                                          DuckDB を利用してベクトル検索と日本語全文検索の両方を同時に利用できます。さらにこれらの結果をマージして Reranking を行うことでハイブリッド検索をサクサクっと実現する事が​できます。 Rerankerどうやらベクトル検索した結果と日本語全文検索した結果をマージして、クエリーとマージ結果を再度ランキング付けする仕組みのようです。 ここでは参考にした記事を共有する程度にしておきます。 日本語最高性能のRerankerをリリース / そもそも Reranker とは? - A Day in the Lifeリランキング モデルによる RAG の日本語検索精度の向上 - NVIDIA 技術ブログ今回は Reranker に hotchpotch/japanese-reranker-cross-encoder-large-v1 を利用しました。 以下は参考コードです。 [projec

                                                            DuckDB でハイブリッド検索
                                                          • SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services

                                                            Amazon Web Services ブログ SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する みなさんこんにちは。ソリューションアーキテクトの福本です。 本投稿のテーマは Software as a Service(SaaS)におけるルーティングです。 SaaS ではテナントごとにサーバーなどのリソースが分離されていることがあります。そのため、各テナントに属するユーザーからのリクエストを適切なリソースへとルーティングする必要があります。 具体的なルーティングの話に入る前に、SaaS のテナント分離モデルについて説明をします。SaaS では、テナントの分離モデルとしてサイロ、プール、ブリッジモデルが存在します。また、ユーザーがサブスクライブしている利用プラン (ティア) によって、リソースの分離形態が変わるような、階層ベースの分離もあります。 サイ

                                                              SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services
                                                            • Claude Code×Obsidianで作るナレッジベース開発環境 - YOUTRUST Tech Blog

                                                              この記事で得られること ✅ 30分の会議を5分で議事録化する自動化フロー ✅ 開発量を2.5倍に増やした具体的な環境構築方法 ✅ 情報検索を30秒以内に短縮するナレッジ管理術 ✅ PRレビューを10点満点で自動評価する設定 ✅ すぐに使えるCLAUDE.md設定テンプレートとスクリプト TL;DR Claude CodeとObsidianを組み合わせることで、議事録作成時間を66%削減、開発コントリビューションを2.5倍に増加させました。Tactiq→Google Drive→Obsidianの自動化フローと、AIに最適化されたナレッジベース構築により、マネジメント業務をこなしながらも効率的な開発を実現。本記事では実際の設定ファイルとワークフローを公開します。 こんにちは、YOUTRUSTでエンジニアリングマネージャーをしている須藤(YOUTRUST/X)です。AI爆速普及委員会の委員長と

                                                                Claude Code×Obsidianで作るナレッジベース開発環境 - YOUTRUST Tech Blog
                                                              • ぼくのMac環境 ver.のんピ | DevelopersIO

                                                                何年後かの自分へ こんにちは、のんピ(@non____97)です。 業務で使用する新しいMacが届きました。 新しいMacを初期セットアップするにあたって「今の設定どうだったっけ...」と調べる時間が結構かかってしまいました ということで何年後かの自分がまた新しいMacに乗り換える際に手間取らないように、設定した内容を書き記しておきます。 移行先のMacの情報は以下の通りです。M1 Max、嬉しい。 # OSのバージョンの確認 > sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 # カーネルのバージョン確認 > uname -r 21.5.0 # CPUのアーキテクチャの確認 > uname -m arm64 # CPUの詳細確認 > sysctl -a machdep.cpu machdep.cpu.

                                                                  ぼくのMac環境 ver.のんピ | DevelopersIO
                                                                • Googleマップのタイムラインから「日記」を作ってみた✍️🗺️|朝日新聞社 メディア研究開発センター

                                                                  はじめにメディア研究開発センターの山崎です。 毎日いろいろ移動しているけれど、気づくと忘れてしまいがち。自分の行動を記録しておきたいと思い、Googleマップのタイムラインを活用した日記自動生成に挑戦してみました。Googleマップのタイムライン(Location History)には細かなログが残っているので、これを材料に生成AIで日記っぽくまとめる仕組みをPythonで作ってみました。 Googleタイムラインデータの取得使用するデータはGoogleマップアプリに記録されているGoogleタイムラインデータです。端末内に保存する仕様になっており、どうやらPCからはダウンロードできなくなりました。スマホのGoogleマップアプリの「設定」からダウンロードして、PCへ転送できます。 ダウンロード手順とデータについては以下にて解説されています。 Googleタイムラインデータの内容ダウンロー

                                                                    Googleマップのタイムラインから「日記」を作ってみた✍️🗺️|朝日新聞社 メディア研究開発センター
                                                                  • ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ

                                                                    この記事はBASE Advent Calendar 2020の11日目の記事です。 devblog.thebase.in BASE株式会社 Data Strategy チームの@tawamuraです。 BASEではオーナーの皆様や購入者様のお問い合わせに対して、Customer Supportチームが主となって対応をしています。その中でもいくつかの技術的なお問い合わせに対しては、以下のようにSlackの専用チャンネルを通して開発エンジニアに質問を投げて回答を作成することになっています。 CSチームから調査を依頼されるお問い合わせの例 これらのCS問い合わせ対応は日々いくつも発生しており、CSお問い合わせ対応を当番制にして運用してみた話 でもあるように週ごとに持ち回り制で各部門のエンジニアが対応しているのですが、どうしても調査や対応に時間が取られてしまうという問題が発生していました。 dev

                                                                      ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ
                                                                    • 自分のAWS環境について何でも教えてくれるエージェントが作れそう(Agents for Amazon Bedrock + Knowledge bases for Amazon Bedrock) - Qiita

                                                                      import logging from multiprocessing import Process, Pipe import re import sys from io import StringIO from typing import Dict, Optional logger = logging.getLogger(__name__) globals: Optional[Dict] = {} locals: Optional[Dict] = {} def sanitize_input(query: str) -> str: """Sanitize input to the python REPL. Remove whitespace, backtick & python (if llm mistakes python console as terminal) Args: query

                                                                        自分のAWS環境について何でも教えてくれるエージェントが作れそう(Agents for Amazon Bedrock + Knowledge bases for Amazon Bedrock) - Qiita
                                                                      • OOP: the worst thing that happened to programming

                                                                        > BTC: bc1qs0sq7agz5j30qnqz9m60xj4tt8th6aazgw7kxr ETH: 0x1D834755b5e889703930AC9b784CB625B3cd833E USDT(Tron): TPrCq8LxGykQ4as3o1oB8V7x1w2YPU2o5n Ton: UQAtBuFWI3H_LpHfEToil4iYemtfmyzlaJpahM3tFSoxomYQ Doge: D7GMQdKhKC9ymbT9PtcetSFTQjyPRRfkwTdismiss OOP: the worst thing that happened to programming [2/24/2025] In this article, we will try to understand why OOP is the worst thing that happened to prog

                                                                          OOP: the worst thing that happened to programming
                                                                        • Excel、Excel VBA をGitで管理する - Qiita

                                                                          Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 可能な限り避けたいのですが、稀に大量のExcelやExcel VBAを管理しなくてはならないときってありませんか? App Scriptであれば、まだ管理する方法は幾つかあります。 しかし、ExcelやExcel VBAだと管理する方法が無く、どこかクラウド上のドライブで保管する。に行き着くことが多いです。 なにか良い管理方法はないかと色々と考えた結果、やはりGitで管理するのが良さそうだと思ったので、記事にしました。 Excel、Excel VBAをGitで管理する Excel、Excel VBAをGitで管理すると、結局バ

                                                                          • Python(PyTorch)で自作して理解するTransformer

                                                                            1. はじめに Transformerは2017年に「Attention is all you need」という論文で発表され、自然言語処理界にブレイクスルーを巻き起こした深層学習モデルです。論文内では、英語→ドイツ語翻訳・英語→フランス語翻訳という二つの機械翻訳タスクによる性能評価が行われています。それまで最も高い精度を出すとされていたRNNベースの機械翻訳と比較して、 精度(Bleuスコア) 訓練にかかるコストの少なさ という両方の面で、Transformerはそれらの性能を上回りました。以降、Transformerをベースとした様々なモデルが提案されています。その例としては、BERT,XLNet,GPT-3といった近年のSoTAとされているモデルが挙げられます。 ここで、「Attention is all you need」内に掲載されているTransformerの構造の図を見てみま

                                                                              Python(PyTorch)で自作して理解するTransformer
                                                                            • NETGEAR社製ルーターにおける認証不要の任意コード実行の技術的解説(PSV-2022-0044) - GMO Flatt Security Blog

                                                                              ※本記事は先立って公開された英語版記事を翻訳し、日本語圏の読者向けに一部改変したものです。 画像出典: https://www.netgear.com/business/wifi/access-points/wac124/ はじめに こんにちは、株式会社Flatt Securityのstypr(@stereotype32)です。 一昨年、日本のOSS製品で発見された0day脆弱性に関する技術解説をブログに書きました。 それ以来、私は様々な製品に多くの脆弱性を発見してきました。残念ながら私が見つけたバグのほとんどはすぐに修正されなかったので、今日まで私が見つけた、技術的に興味深い脆弱性の情報を共有する機会がありませんでした。 本記事では、NETGEAR社のWAC124(AC2000)ルーターにおいて、様々な脆弱性を発見し、いくつかの脆弱性を連鎖させて、前提条件なしに未認証ユーザーの立場からコ

                                                                                NETGEAR社製ルーターにおける認証不要の任意コード実行の技術的解説(PSV-2022-0044) - GMO Flatt Security Blog
                                                                              • プロンプトエンジニアリングを最適化する為のフレームワークSAMMOを実際に使ってみた - Taste of Tech Topics

                                                                                いつの間にか春も過ぎ去りすっかり夏模様の今日この頃皆さんいかがお過ごしでしょうか?菅野です。 生成AIの重要性が高まり、生成AIで利用できるテキスト量が長くなるにつれてにつれて、プロンプトエンジニアリングの重要性が高まってきました。 プロンプトエンジニアリングとは、そのプロンプトにどのような命令、事前情報等を入力すると、より適した応答が返ってくるかを設計する技術です。 そんなプロンプトエンジニアリングを最適化する為のPythonライブラリ、SAMMOがMicrosoft社から2024年4月18日にリリースされたので紹介していきます。 www.microsoft.com SAMMOとは? Structure-Aware Multi-objective Metaprompt Optimizationの頭文字をとったフレームワークです。 元来、プロンプトエンジニアリングでは、エンジニアが、様々な

                                                                                  プロンプトエンジニアリングを最適化する為のフレームワークSAMMOを実際に使ってみた - Taste of Tech Topics
                                                                                • Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita

                                                                                  # ----------------------------- # 2nd Screening V1 # ----------------------------- import time global_start_time = time.time() from google.colab import drive drive.mount('/content/drive') import pandas as pd import numpy as np import os from tqdm.notebook import tqdm import yfinance as yf from curl_cffi import requests # -------------------------------------------------- # ヘルパー関数定義セクション # --------

                                                                                    Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita