タグ

数学に関するseuzoのブックマーク (9)

  • 数学は人文系である - モジログ

    学問はしばしば、「自然科学(natural science)」、「社会科学(social science)」、「人文科学(humanities)」の3つに分けられる。この3つのなかで、数学はどこに属するだろうか。 「もちろん自然科学でしょ」と答える人が、おそらく多いだろう。しかし、これは間違いである。数学は、自然科学には欠かせないものだが、数学自体は自然科学ではない。 自然科学は、人間が作ったものではない「自然」というものについて、その性質や規則性をさぐるものである。いっぽう、数学はすべて人間が作ったものであり、一種の言語体系である。数学は自然に属してはいないのだ。よって、数学は自然科学ではない。 数学が社会科学ではないことは明らかだろう。社会科学は、人間の集団が生み出す社会というものについて、その性質や規則性をさぐるものである。 数学が自然科学ではなく、また社会科学でもないとすれば、あと

  • 微分方程式を図解する

    物理では(実は物理によらず、いろいろな場面では)「微分方程式を解く」必要があることが多い。なぜなら、物理法則のほとんどが「微分形」で書かれているからである。「微分形で書かれている」というのは「微小変化と微小変化の関係式で書かれている」と言ってもよい。物理の主な分野における基礎方程式は、運動方程式 を初めとして、微分方程式だらけなのである。 微分方程式を解くには、積分という数学的技巧が必要になる。そのため「ややこしい」と嫌われる場合もあるようだ。 計算ではなく図形で「微分方程式を解いて関数を求める」というのはどういうことなのかを感じていただけたらと思い、アニメーションプログラムを作った。ただ計算するのではなく、「何を計算しているのか」をわかった上で計算のテクニックを学んだ方が理解は深まると思う。 ここでは微分方程式の中でも一番単純な「一階常微分方程式」を考える。「一階常微分方程式を解く」とは

  • 数学の歴史2万年+αを250のマイルストーンでまとめてみた

    数学の営みは、我々が想像する以上に古く長い。 先史時代の遺物にも、計数の概念や天体観測に基づいた測時法があったことを示すものが発見される。 今回は、可能な限り(というかやり過ぎなくらいに)遡り、専門研究から数学遊戯、ポピュラー文化まで渉猟し、数学歴史を画するマイルストーン(画期的出来事)を見つけ出そうとするクリフォード・ピックオーバーのThe Math Bookが取り上げる項目を手掛かりに、人類(すらも踏み越えているのだが)の営む数学歴史を振り返ってみる。 c. 150 Million B.C. 経路積分する蟻 Ant Odometer サハラサバクアリCataglyphis fortisは、経路積分によって巣からの位置を把握する。回り道をしながらべ物に辿り着いても最短距離で巣へ戻る。風のために砂丘の高さが変わっても、登りのために増えた分を差し引いて、巣までの水平距離を間違うことがな

    数学の歴史2万年+αを250のマイルストーンでまとめてみた
  • 第14回:全ての植物をフィボナッチの呪いから救い出す

    連載コラム 「生命科学の明日はどっちだ」 目次 第14回:全ての植物をフィボナッチの呪いから救い出す ロマネスコ(左)とマンデルブロ集合の一部(右) 植物にかかったフィボナッチの魔法 このオーラ全開の野菜、なんだか知ってますか。 そう、最近デパートなんかではよく見るようになったロマネスコというカリフラワーの仲間である。 一説によると、悪魔の野菜とか、神が人間を試すために作った野菜とか言われているらしい。 なんと言っても凄いのは、フラクタル構造がめちゃめちゃはっきり見えること。 まるでマンデルブロ集合みたいだ。 ね、似てるでしょう。フラクタルがこんなにはっきり見える構造物は、他には無いんじゃないかな。 この植物が面白いのは、それだけでは無い。 実の出っ張った部分をつなげていくと、らせん構造がくっきり見えてくるでしょう? そのらせんの数を数えてみよう。 右向きのらせんと左向

  • コンプガチャだけじゃない!? ガチャに潜む確率の罠 - てっく煮ブログ

    twitter をみていたら、こんなツイートが回ってきました。 モバゲー・GREEが確率明示しないのは、搾り取るためというよりは、クレーム対応減らすため。1%でSR、って書くと「100回引いたのに出ない。詐欺だ」。確率だから、って説明すると彼らはこう返す「だから、100回に1回出るんでしょ?」さあ、どう返そうか。 2012-05-06 17:15:49 via モバツイたしかに「1% のガチャを 100 回引いたら当たる」と思い込んでしまう人は多そうです。では、1% のガチャを 100 回引くと、どれぐらいの人が当たり、どれぐらいの人が当たらないのでしょうか。1% のガチャを 100 回引いて当たらない確率は?さっそく計算してみましょう。1 回ガチャを引いて当たらない確率は です。当たる確率は なので 1% と求まります。2 回ガチャを引いたときに、1 度も当たらない確率は です。つまり、

    seuzo
    seuzo 2012/05/17
    「1/n の確率のガチャを n 回引いても 36% の人は当たらない」
  • 6÷2(1+2)=9と発表しているバカガジェット通信

    http://getnews.jp/archives/114382上のエントリーでは「6÷2(1+2)=1は間違い、正解は9」としているが正解は「1」である。2(1+2)の時点でこの問題自体がおかしいが、強いて解答すると答えは「1」になる。まずガジェット通信では「四則演算は優先順位があるのはご存じの通り。カッコの中を先に計算しその後に乗算(かけ算)、除算(割り算)を計算する(カッコの中に乗算、除算がある場合はそちらも優先)。」としているがこれは6÷2×(1+2)の場合に成り立つ事である。6÷2×(1+2)だったら答えは確かに9だがここでは乗算記号「×」が省略されている。つまり2(1+2)は一つの「多項式」なのである。数学的な話になるが「a×b」と「ab」では結合力が違う。前者は「単項式×単項式」という「2つの項を掛け合わせたもの」であるのに対して後者は「多項式」であり、「一つの項」である。

  • 1/nの確率で観測できる事象をn回試行すると1度でも観測できる確率は□以上 - シリコンの谷のゾンビ

    トリビアの種風なタイトルにしてみた.タイトルの答えは後半で述べる. ことの発端は,「17の倍数であるナンバープレートを見つけるためには,車を何台観測しなければないか」というような雑談がきっかけ.こういう日常的な算数ができるとかっこいいなぁと思ったので,ちょっと考えてみた. 現在は希望ナンバーがあるため,ナンバーの分布には偏りがあるものの,ナンバーは一様分布していると仮定する. すると,17の倍数はおおよそ1/17の確率で見つけることができる.ここで各観測はベルヌーイ試行と捉えることができるため,確率や統計の初歩的な知識でなんとかできそうな気がする. たとえば,5回目に "初めて" 17の倍数を見つける確率は,4回17の倍数以外 (=16/17) の事象を観測し,5回目に1/17の事象を観測したと考えることができ, で求めることができる. さて,これを一般化すると,確率pで起きる事象をk回目

    1/nの確率で観測できる事象をn回試行すると1度でも観測できる確率は□以上 - シリコンの谷のゾンビ
  • 「 2 」か「 9 」で割ってみる - ナイトシフト

    先日、飲んでたときに「 9 」という数字が面白いというになったのですが、「 数字が合わないときに『 9 』で割ったりするよね。 」と言ったら誰もやってなかったのでその話をします。たぶん、会計に携わってる人なら知ってる人も多いはず。 例えば、経理の仕事をしてたりすると、仕訳を全部入力したのに帳簿の残高と実際の預金残高が合わないということがあると思います。会計の仕事をしていない人でも、家計簿ソフトを使ってて、レシートを全部入力したのに現金の残高が合わないなんていうことがあるんじゃないでしょうか。そんなときは闇雲に間違いを探しはじめないで、とりあえず差額を「 2 」か「 9 」で割ってみるといいかもしれません。割り切れると↓こんな可能性が考えられます。 「 2 」で割り切れる → ±を逆に入力してる可能性がある「 9 」で割り切れる → 桁間違い or 数字の一部を逆に入力してる可能性がある  

    seuzo
    seuzo 2009/01/23
  • 生活や実務に役立つ高精度計算サイト

  • 1