問題設定と評価指標 既存の手法 ノンパラメトリックな手法 パラメトリックな手法 提案手法 概要 詳細 ステップ1 ステップ2 これを基にした画風変換 参考文献 自分の研究が画像処理系の機械学習と関係ないのでやや適当です。 問題設定と評価指標 [Gatys2015]より。 ある画風の画像を入力して、その画風を持った見た目が自然な画像を出力する。 画風の元になった画像が認識できない状態を保って成功とする。つまり画像のつぎはぎが目立つ、といったケースは問題にしない。 CNNを用いた画風変換の元になったモデル。 既存の手法 パラメトリック、ノンパラメトリックと大きく二つの方針に分かれている。 ノンパラメトリックな手法 画風の元になる画像を指定して、そこから画風(を表してると思われるもの)をうまくサンプリングして新しい画像や物体に適用する。 画風変換で検索すると、もはやCNNベースの手法しか検索で出

