2016年9月7日のブックマーク (9件)

  • 第14回:全ての植物をフィボナッチの呪いから救い出す

    連載コラム 「生命科学の明日はどっちだ」 目次 第14回:全ての植物をフィボナッチの呪いから救い出す ロマネスコ(左)とマンデルブロ集合の一部(右) 植物にかかったフィボナッチの魔法 このオーラ全開の野菜、なんだか知ってますか。 そう、最近デパートなんかではよく見るようになったロマネスコというカリフラワーの仲間である。 一説によると、悪魔の野菜とか、神が人間を試すために作った野菜とか言われているらしい。 なんと言っても凄いのは、フラクタル構造がめちゃめちゃはっきり見えること。 まるでマンデルブロ集合みたいだ。 ね、似てるでしょう。フラクタルがこんなにはっきり見える構造物は、他には無いんじゃないかな。 この植物が面白いのは、それだけでは無い。 実の出っ張った部分をつなげていくと、らせん構造がくっきり見えてくるでしょう? そのらせんの数を数えてみよう。 右向きのらせんと左向

  • フーリエ級数視覚化装置を作った - アジマティクス

    【方形波のフーリエ級数展開】方形波をフーリエ級数展開(三角関数で近似)している画像です! ∑(゚Д゚) スッスゴイ...!! pic.twitter.com/hFpJxJb6Ac — 数学と物理の名言bot (@Mathphysicsbot) 2015, 9月 28 はぇー面白い これ( https://t.co/uMm0inKXeV )にインスパイアされて、円が10個のバージョンを作ってみたらキモくなった pic.twitter.com/lUkBNNldy9 — どね (@donnay1224) 2016, 2月 5 ヒョエーすごい ワイも作ってみたい! 作りました。 k_1(x)=のところに好きな関数(数列)を入れて遊べるフーリエ級数視覚化マシーンを作りましたhttps://t.co/GmQo5NoZbz pic.twitter.com/vHrQ32FdWw — 鯵坂もっちょ (@mo

    フーリエ級数視覚化装置を作った - アジマティクス
  • はじめてのディリクレ関数 - アジマティクス

    「ディリクレ関数」という病的な関数があります。こんなのです。 「」とは「に関する関数ですよ」ってことです。すなわちディリクレ関数とは、「に有理数を入力すると1が、無理数を入力すると0が出てくる関数ですよ」ということを意味しています。 例えばは有理数なので、は無理数なのでということになります。 あ、「ディリクレ」は人名です。こういう関数を考えた人がいたよってことです。 ペーター・グスタフ・ルジューヌ・ディリクレ (Johann Peter Gustav Lejeune Dirichlet, 1805 - 1859) なんか便利そう それ自体の有用性はいろいろあるとは思うし、この関数は「いたるところで不連続」というかなり面白い特徴を持つ関数なんですが、今回の話はそこではありません。 「有理数のとき1、無理数のとき0」っていう定義、なんか便宜的っぽいですよね。あぁたしかにそんな関数あったらなんか

    はじめてのディリクレ関数 - アジマティクス
  • とりあえずだまされたと思って-((-1)^(1/7))を2乗してみてくれ - アジマティクス

    「アラブ世界では代数学が発展した」とはよく聞くけど、どうも自分の中でしっくりきていなかったというか、要するにあんな難しいものがどうやって始まり発展したのだろう? と気になっていたのですが、最近思うのです。代数学の始まりとは、「イコールの学問」だったのではないか? と。 つまり、「ある数を2乗して1引いたら元の数と同じになるような数はあるかな?」とか、「1引いてから2乗したら元の数の2倍になるような数があったら面白そうじゃない?」みたいな素朴な疑問から始まったのではないかと思うのです。なにかの操作をした数と別の操作をした数が「同じ」、すなわちイコールの学問ではないかと。 これは現代の言葉で言えば前者は「」、後者は「」のことになります。これはまさに方程式です。「代数学が発展した」「方程式の学問が発展した」っていきなり言われても実感がわかないけど、こういう素朴な疑問から始まったとしたら、最初期の

    とりあえずだまされたと思って-((-1)^(1/7))を2乗してみてくれ - アジマティクス
  • 京大理系数学の入試問題(2016)が面白いらしい - アジマティクス

    受験生のみなさん、お疲れ様です。どうでしたか? 2016年度京都大学理系数学の入試問題の大問②が、界隈でちょっとした話題になっているようです。 引用します。 素数 を用いて と表される素数をすべて求めよ. なるほど なるほど。わたくし受験数学は詳しくないので、そっち畑の人からはこの問題がどう見えるのかはわかりませんが、確かにもし自分でこの問題を思いついたとしたら、しばらくはハマって考えてしまいそうな感じの興味深さがあります。たくさんあるのかな? 一つしかなかったりして? そんなの証明できるの? 気になります。 解説してみた これ、私一人では手も足も出ませんでしたが、ネット上で解いてみてる人がたくさんいたのでカンニングしました。 したんですが、ちょっと前提として必要な知識が多すぎて、受験生向けにはいいかもしれないけど数学初心者にはちょっと辛いかなみたいな感じでしたので、僭越ながらわたくし必死

    京大理系数学の入試問題(2016)が面白いらしい - アジマティクス
  • How to create a new "person curve"?

    Wolfram|Alpha has a whole collection¹ of parametric curves that create images of famous people. To see them, enter WolframAlpha["person curve"] into a Mathematica notebook, or person curve into Wolfram|Alpha. You get a mix of scientist, politicians and media personalities, such as Albert Einstein, Abraham Lincoln and PSY: The W|A parametric people curves are constructed from a combination of trigo

    How to create a new "person curve"?
  • 初音ミクの数式が解明 さらにいろんな「俺の嫁」が関数で描けることが判明

    すまない。僕は数学の詳しいことはよく分からない。ただ、x軸とy軸っていう広大なフロンティアの上で、ファンタスティックな数式が僕らの「嫁」を描き出している……そのことだけは分かって、感動した。心に座標があれば、数式だけで……数式だけで僕らは嫁を思い描ける。それを教えてもらった気がして、胸が熱くなったんだ。 キミも興味があるなら、検索サービス「WolframAlpha」を訪れて、「graph Hatsune miku curve」と入力してみてほしい。そこにはある数式が現れるはずだ。長いツインテールをたたえた、僕らの天使ミクの数式が。 初音ミク、数式に変換されグラフに召喚される WolframAlphaは2009年に始まったWebサービスで、いうなれば“質問応答システム”だ。アルゴリズムや自然言語解析を駆使し、入力したキーワードに対する計算結果や事実情報といった「答え」を返してくる。そんなWo

    初音ミクの数式が解明 さらにいろんな「俺の嫁」が関数で描けることが判明
  • 1から100までの自然数の和

    1から100までの自然数の和 問題   1+2+3+4+・・・・・・・・+98+99+100 = 5050 の計算を、順々に足していく方法より、楽にできる 方法をできるだけ多く見つけなさい。 ただし、単に公式を使って 100×101÷2=5050 とする方法は省きます。 また、以下の計算の答えは、既に分かっているものとして使用しても構いません。 1 + 2 = 3 1 + 2 + 3 = 6 1 + 2 + 3 + 4 = 10 1 + 2 + 3 + 4 + 5 = 15 1 + 2 + 3 + 4 + 5 + 6 = 21 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 1 + 2 + 3 + 4 + 5 + 6 + 7 +

    1から100までの自然数の和
  • http://izumi-math.jp/S_Yoshida/wa/wa.pdf