タグ

nmfに関するwerdandiのブックマーク (5)

  • はてなグループの終了日を2020年1月31日(金)に決定しました - はてなの告知

    はてなグループの終了日を2020年1月31日(金)に決定しました 以下のエントリの通り、今年末を目処にはてなグループを終了予定である旨をお知らせしておりました。 2019年末を目処に、はてなグループの提供を終了する予定です - はてなグループ日記 このたび、正式に終了日を決定いたしましたので、以下の通りご確認ください。 終了日: 2020年1月31日(金) エクスポート希望申請期限:2020年1月31日(金) 終了日以降は、はてなグループの閲覧および投稿は行えません。日記のエクスポートが必要な方は以下の記事にしたがって手続きをしてください。 はてなグループに投稿された日記データのエクスポートについて - はてなグループ日記 ご利用のみなさまにはご迷惑をおかけいたしますが、どうぞよろしくお願いいたします。 2020-06-25 追記 はてなグループ日記のエクスポートデータは2020年2月28

    はてなグループの終了日を2020年1月31日(金)に決定しました - はてなの告知
  • 高速な非負値行列分解(Nonnegative Matrix Factorization:NMF)についての簡単まとめ - 北の大地から

    2015-10-03 高速な非負値行列分解(Nonnegative Matrix Factorization:NMF)についての簡単まとめ 非負値行列分解(Nonnegative Matrix Factorization:NMF)は,非負行列を低次元な非負行列の積に分解する手法 この行列を見つけるために (非負制約は省略) を最小化することになる. しかし,この問題はU,Vに対して同時に凸ではないために,片方を固定して最適化するを交互に行う交互最適化を行う必要がある. この交互最適化はEMアルゴリズムのように,大域最適解の保証はされない. 実際に,非負制約もあることで,NMFの大域最適解を見つけることはNP-hardであることがVavasisらによって示されている. この記事では,どのような手法があるのか列挙し,コメントを残すだけで,詳しい言及は避ける.(気力があれば少しずつ

  • NMFアルゴリズムの紹介 その② GCD - 北の大地から

    2015-10-05 NMFアルゴリズムの紹介 その② GCD 研究が進んでいないので,記事を書いて,モチベーションを高めることに.... 今回の紹介アルゴリズムはNMFで現在(2015年10月)で最速といわれている(筆者の知る限り)手法Greedy Coordinate Descent Algorithmの紹介です. 元論文は, Hsieh, C.-J., & Dhillon, I. S. (2011). Fast coordinate descent methods with variable selection for non-negative matrix factorization. In ACM SIGKDD (pp. 1064–1072). https://www.google.co.jp/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3

  • NMFアルゴリズムの紹介 その① HALS - 北の大地から

    2015-10-04 NMFアルゴリズムの紹介 その① HALS 昨日は,NMFの簡単なまとめをしたが,今回は,その一つの手法を取り上げることにします. 当はMultiplicative Update ruleを最初に取り上げるべきなのでしょうが, 既に多くの記事で取り上げられているので,同じ内容を二度もやる必要はないだろうということで省きます. わかりやすい記事としては, Non-negative Matrix Factorization(非負値行列因子分解) - あらびき日記 Natureの例などを載せてくれていて,非常にわかりやすいです. smrmkt.hatenablog.jp リコメンデーション等の例もあり,直観的にわかる内容の記事になっています.なんとなくNMFを試してみるかという場合は,Multiplicative Update ruleで問題ありません. し

  • 非負値行列因子分解(NMF)によるレコメンドのちょっとした例 - About connecting the dots.

    最近線形代数についていろいろ読みなおしたりしてるのですが(線形代数チートシートを前の記事でまとめてあります),その一環でレコメンドアルゴリズムについていくつか試してみたので,それを解説します.順序としては,基の協調フィルタリング(ユーザベースド,アイテムベースド)→特異値分解(SVD)→非負値行列因子分解(NMF)になります. 基的な考え方 ここで取り扱うのは,すべて以下のようなユーザ×商品のマトリックスをベースとしたレコメンドになります*1.ここでは映画レンタルサービスを例にして考えます.6人のユーザが,4つの映画*2のうちレンタル視聴したものについては,1-5点の5段階評価を行いました.0になっているものは「みていない」ということになります. まずはざっと評価の状況をみると,「千と千尋の神隠し」が最もよく視聴されていて,6人中4人がみています.次にみられているのは「となりのトトロ」

  • 1