
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Python3を使った日本語自然言語処理(4)ロジスティック回帰による感情分析 - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Python3を使った日本語自然言語処理(4)ロジスティック回帰による感情分析 - Qiita
TF-IDFによる単語の関連性の評価とは 前回までで文章をパースし、単語を特徴ベクトルに変換することを行... TF-IDFによる単語の関連性の評価とは 前回までで文章をパースし、単語を特徴ベクトルに変換することを行いました。ただ、ある単語がたくさん文章中で存在していても、それがどのカテゴリーの文章でもたくさん登場する単語であれば、カテゴリーを判断する上でその単語の重要性はあまり高くはありません。 ある映画レビューを「肯定的なもの」「否定的なもの」で分類したい時、「すごい」という単語は『すごいつまらなかった』という文脈でも『すごいよかった』という文脈でも頻繁に使われうるので、これだけではそのレビューのネガポジは判断するのが難しいです。 こういった感じで、ある単語がカテゴリーわけを行う際、重要であればその単語の重みをあげ、重要でなければ下げる手法が「TF-IDF」です。TFは単語の出現頻度を、IDFは逆文書頻度と呼ばれ、定義は以下のようになります。 $n_d$はドキュメントの総数、$df(t, d)$