
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
スパースモデリングのモデルを評価する~LASSO推定値の評価方法
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
スパースモデリングのモデルを評価する~LASSO推定値の評価方法
LASSO推定値に影響を与えるパラメータ 前回の記事ではスパースモデリングの代表的手法であるLASSOを紹介... LASSO推定値に影響を与えるパラメータ 前回の記事ではスパースモデリングの代表的手法であるLASSOを紹介しました。LASSOとは、以下の式の値を最小化する最適化問題のことを指します。 \(\frac{1}{2}\|\Phi x - y\|^2_2 + \lambda \|x\|_1\) この式における第二項は正則化項、\(\lambda\)が正則化パラメータと呼ばれます。ここで正則化パラメータの大きさというのは、正則化項が及ぼす影響の大きさを表します。前回の記事でLASSOを用いるといくつかの回帰係数がゼロとなり、変数選択を行うことができると説明しましたが、正則化パラメータを変更することで、ゼロと推定される回帰係数の数が変わっていきます。正則化パラメータが大きい時は\(|x\|_1\)を小さくしようとする動きが働きます。つまり、ゼロと推定される回帰係数の数が多くなります。逆に正則化パラ