
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント3件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
時系列データのための大規模言語モデル
近年の大規模言語モデル(LLM)の出現は、自然言語処理(NLP)においてパラダイムシフトをもたらし、Cha... 近年の大規模言語モデル(LLM)の出現は、自然言語処理(NLP)においてパラダイムシフトをもたらし、ChatGPTをはじめとする様々な革新的サービスを生み出している。LLMの急速な進化は、NLPの領域を超えて、より広範なデータモダリティへのLLMの適用可能性を探る研究への発展を促している。その中で今回注目したのが、時系列データへのLLMの適用である。例えば、[Gruver+, 2023] では、GPT-3やLLaMA-2などの既存のLLMが、ダウンストリームタスクで教師あり学習した時系列モデルの性能に匹敵するか上回るレベルで、zero-shotで時系列予測ができることを報告しており、大変興味深い。本ブログでは、2024年に公開されたサーベイ論文「Large Language Models for Time Series: A Survey」を参考にLLM for Time Seriesの全
2024/07/11 リンク