
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
自然言語処理を理解しよう Seq2SeqからTransFormer(Attention)まで - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
自然言語処理を理解しよう Seq2SeqからTransFormer(Attention)まで - Qiita
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure y... Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 本書は時系列データを別の時系列データに変換するSeq2Seqについて、RNN、LSTMからAttentionまで説明します。また、Attentionを用いた最新の様々な自然言語モデルのベースとなっているTransFormerについても説明します。(CNNの基礎を理解している前提で記載しています。まだ理解していない方は別冊のCNNの基礎を先に読んでください) Seq2Seqを基礎から理解するために、本書では以下の順番で説明を行います。最初に時系列データを扱うシンプルな構造であるRNN(Recurrent Neural Network)から