
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
自前でk-NN実装してみる - Qiita
動機 機械学習関連の知識を再確認していて、まずは最も基本的な手法、k-NN法(k最近傍法)を勉強がてら... 動機 機械学習関連の知識を再確認していて、まずは最も基本的な手法、k-NN法(k最近傍法)を勉強がてら自前で実装してみました。 k-NN法とは まずはk-NNの概要からおさらいします。とてもシンプルでわかりやすいアルゴリズムなのですぐ理解できると思います。 このアルゴリズムは下の図が全てです。 注目データは中心の星印です。まず与えられたデータに対して全てのデータ間の距離を計算します。例えばk=3のとき、注目データに最も近い上位3個のデータのラベルを見ます。この場合、クラス1が2個、クラス2は1個なので最頻値を取るクラス1に分類されます。一方で、k=6としてみると、クラス1が2個、クラス2が6個となるので、このデータはクラス2に分類されます。 このように与えられたデータは近いデータのラベルの多数決で決定されることになります。 ちなみにk=1のときは最近傍法とも呼ばます。 似たような名前の手法