
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
機械学習の定番「サポートベクターマシン(SVM)」を高校生でもわかるよう解説 - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
機械学習の定番「サポートベクターマシン(SVM)」を高校生でもわかるよう解説 - Qiita
はじめに 機械学習の定番アルゴリズムの1つである「サポートベクターマシン(SVM)」ですが、 実用的、... はじめに 機械学習の定番アルゴリズムの1つである「サポートベクターマシン(SVM)」ですが、 実用的、かつ比較的シンプルなアルゴリズムから、入門書等でも取り上げられることが多いです。 ただし、解説の抜け漏れや、難解すぎる書籍や記事が多いと感じたので、備忘録も兼ねて ・網羅的 ・平易な説明 ・実データでの実装例あり(Pythonのライブラリscikit-learn(インストール法)を使用) を心がけ、高校生でも「理解した!」と言えるような記事を目指したいと思います。 注意 注意1 ・高校生でもわかると銘打ってしまったのに申し訳ありませんが、 高校で勉強しない(理系の大学1~2年で学習)偏微分の知識が出てきます。 大変分かりやすいYouTube動画があるので、こちらを見れば「理解した!」と言えるのではと思います。 偏微分 ラグランジュの未定乗数法 不等式条件のラグランジュの未定乗数法(KKT条