
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
VAEの異常検知の精度向上を考える - Qiita
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure y... Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 深層距離学習、生成モデルを用いた様々な異常検知手法が提案されています。 その中でも2018年度人工知能学会全国大会で発表された、複雑な工業製品をVAEで異常検知する際に有用な非正則化項を用いた異常検知手法を用いて実験しました。 その手法の中で正常な部分に誤って異常判定が起きる問題、具体的には標準偏差出力層σが過少に評価されることによる過大な異常判定が生じる問題があり、その解決手法を検討しました。 今回は、データ拡張による精度向上効果を検証します。 (データ拡張とは…画像に変換処理(反転、拡大、縮小など)を加えることで、学習データの「水増