
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
大規模日本語ビジネスニュースコーパスを学習したXLNet(MeCab+Sentencepiece利用)モデルの紹介 - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
大規模日本語ビジネスニュースコーパスを学習したXLNet(MeCab+Sentencepiece利用)モデルの紹介 - Qiita
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure y... Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? #はじめに 以前、日本語のBERT事前学習済モデルとELMo学習モデルの紹介記事を投稿しましたストックマークの森長です。 モデル公開の記事を多くの皆様に読んでいただき、ありがとうございます。 昨今の自然言語処理界?では、事前学習モデルであるBERTの登場を皮切りに、XLNet、RoBERTa、ALBERTと多数のモデルが提案され、SOTAを競いあい、大いに盛り上がっています! ですが、最先端のモデルは英語や中国語で事前学習されたモデルが多く、日本語で試すにはハードルがかなり高いと感じています。 そこで、今回はBERT、ELMoに続いて、