[CVPR20 Tutotrial] Image Retrieval in the Wild https://matsui528.github.io/cvpr2020_tutorial_retrieval/ Billion-scale Approximate Nearest Neighbor S…
![[CVPR20 Tutorial] Billion-scale Approximate Nearest Neighbor Search](https://cdn-ak-scissors.b.st-hatena.com/image/square/320336fc58fb3b4a71760d78a55a07c4d54fd2f5/height=288;version=1;width=512/https%3A%2F%2Ffiles.speakerdeck.com%2Fpresentations%2F41f78b1009374387ba1ec10952921747%2Fslide_0.jpg%3F15679896)
A walk through the SA-IS Suffix Array Construction Algorithm¶ Some time ago, while looking for solutions to some string-searching problem I was having, I stumbled across the Suffix Array data-structure. It seemed promising, so I looked up the algorithm Wikipedia recommended (the “SA-IS” algorithm from the paper “Linear Suffix Array Construction by Almost Pure Induced-Sorting” by G. Nong, S. Zhang
Summary statistics such as the mean and variance are easily maintained for large, distributed data streams, but order statistics (i.e., sample quantiles) can only be approximately summarized. There is extensive literature on maintaining quantile sketches where the emphasis has been on bounding the rank error of the sketch while using little memory. Unfortunately, rank error guarantees do not precl
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (October 2019) (Learn how and when to remove this message) A hash array mapped trie[1] (HAMT, /ˈhæmt/) is an implementation of an associative array that combines the characteristics of a hash table and an array mapped trie.[1] It
COBS (COmpact Bit-sliced Signature index) is a cross-over between an inverted index and Bloom filters. Our target application is to index k-mers of DNA samples or q-grams from text documents and process approximate pattern matching queries on the corpus with a user-chosen coverage threshold. Query results may contain a number of false positives which decreases exponentially with the query length a
NEW: Join our DP community in Slack! This repository contains libraries to generate ε- and (ε, δ)-differentially private (DP) statistics over datasets. It contains the following tools: Privacy on Beam is an end-to-end differential privacy framework for Go built on top of Apache Beam. It is intended to be easy to use, even by non-experts. PipelineDP4j is an end-to-end differential privacy framework
Karatsuba multiplication of az+b and cz+d (boxed), and 1234 and 567 with z=100. Magenta arrows denote multiplication, amber denotes addition, silver denotes subtraction and cyan denotes left shift. (A), (B) and (C) show recursion with z=10 to obtain intermediate values. The Karatsuba algorithm is a fast multiplication algorithm for integers. It was discovered by Anatoly Karatsuba in 1960 and publi
Programs written in C/C++ can suffer from serious memory fragmentation, leading to low utilization of memory, degraded performance, and application failure due to memory exhaustion. This paper introduces Mesh, a plug-in replacement for malloc that, for the first time, eliminates fragmentation in unmodified C/C++ applications. Mesh combines novel randomized algorithms with widely-supported virtual
Haskell Advent Calendar 2018 20日目 単調増加する自然数の列を、最低限のビット数で表現するための興味深いテクニックと、Haskellによる実装を紹介する。 Elias-Fano encoding この手法は、簡潔データ構造に分類されるもの一つであるが、厳密には条件を満たさないため疑似簡潔データ構造と呼ばれる。1970年代、Peter EliasとRobert Mario Fanoによって独立して発見された。 例題として1, 1, 4, 10, 17, 22, 23, 30という列をエンコードしてみよう。まず、それぞれの数を上位3ビットと下位2ビットに分割する。列の長さをNとしたとき、上位のビット数はとする。 上位ビットの列は000 000 001 010 100 101 101 111となる。これをヒストグラムのようにして23個のビンに分ける。 000: 2個
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く