確率・統計をわかりやすく解説した、200ページ超えの長編スライド。 図解や具体例をふんだんに盛り込んだ直感的説明が秀逸。 数学カフェ 確率・統計・機械学習回 「速習 確率・統計」 https://t.co/8mGWUd8f4D https://t.co/VkDWjFjfWR

異常検知について勉強したのでまとめておきます。 参考文献 下記文献を大いに参考にさせていただきました: [1] Ruff, Lukas, et al. "A Unifying Review of Deep and Shallow Anomaly Detection." arXiv preprint arXiv:2009.11732 (2020). [2] 井手. "入門 機械学習による異常検知―Rによる実践ガイド" コロナ社(2015) [3] 井手,杉山. "異常検知と変化検知 (機械学習プロフェッショナルシリーズ)" 講談社サイエンティフィク(2015) [4] 比戸. "異常検知入門" Jubatus Casual Talks #2(2013) [5] Pang, Guansong, et al. "Deep learning for anomaly detection: A rev
みなさんこんにちは。くにです。 データ分析の世界に足を踏み入れてから9年が過ぎました。 分析実務未経験でキャリアチェンジできたのは幸運としか言えませんが、ある意味無知だったからこそ無謀な挑戦ができたのかもしれません。この挑戦の泥臭い記録は、この記事に書きました。 ポジションは変われど、データを扱う仕事をまだ続けています。 私は実務で手を動かしつつ、不格好に失敗しながら学んできました。わからないことにぶつかるたびに本を買い、その本でわからないことがあればまた本屋に行き、自分が少しでも理解できそうな本を探して買いました。そして、気になる参考文献があれば、それも買って読んでみる…。 こんな生活を続けているうちに、部屋が本だらけになってしまいました。 正直に言って読み切ったという実感のある本はありません。しかし、実務で何かしらお世話になった本は数多くあり、そういう本は手放さずに手元に置いています。
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? CS 448B Visualization (2020 Winter)は、Maneesh Agrawala氏による、Stanford大で行われた、データの可視化に関する体系的な講義です。 スタンフォード大の"CS 448B Visualization (2020 Winter)" がすごい。 データ可視化の体系的講義。どう図表に変換するかの理論、探索的データ分析、ネットワーク分析等の実践と盛り沢山。 スライドに加え、Observable(JavaScript), Colab(Python)どちらでも例を試せる。https://t.co/
データ分析&データ視覚化のコンサルティングをしております、永田ゆかりと申します。 これまで2000人以上の方にデータ分析や活用の研修・トレーニング講師、企業への分析コンサルティングをさせていただいており、仕事をさせていただく中で必要な本を読み続けているうちに、気がついたらデータ分析領域の本を200冊以上読んでいました。 中でもデータビジュアライゼーション・視覚化の領域に関しては私自身の得意領域ということもあり、数多く読み込んでいます。 本記事では数多くのクライアントの方々との問題解決に役立った知識・ノウハウが書かれている良書をご紹介させていただきますので、是非最後までご覧ください。 データ可視化そのものについて知りたいたは、こちらの記事からどうぞ。 データ可視化とは?その重要性や手法、よくある課題と解決策を解説 データ分析における視覚化(ビジュアライゼーション)系のおすすめの本17選1 S
去年の12月頃から数学の学び直しを始めた。 職業柄少し専門的な、特に機械学習の方面の書籍などに手を出し始めると数式からは逃れられなかったりする。とはいえ元々自分は高校時代は文系で数学1A2Bまでしか履修していない。そのせいか少し数学へ苦手意識があり「図でわかるOO」とか「数学無しでもわかるOO」のような直感的に理解出来る解説に逃げることが多かった。実務上はそれで問題ないにしてもこのまま厳密な理解から逃げているのも良くないなと感じたのでもう少し先の数学に取り掛かることにした。 巷には数学の学び直しについての記事が既にたくさんある。それに自分の場合は何かの受験に成功した!とか難関の資格を取得した!というような華々しい結末を迎えている状態ではない。そんな中で自分が何か書いて誰の役にたつかもわからないが、少なくとも自分と似たようなバックグランドを持つ人には意味のある内容になるかもしれないので、どの
anond:20180821070403 データ厨です。 感情的に「軽自動車は危ない」と印象論で煽っていらっしゃるので、客観的にデータでみてみたいと思います。 結論だけ先に述べると 軽自動車は事故を7%起こしやすく、普通自動車より約4割多く死ぬ。 JNCAPの新安全性能評価でも軽はやはり弱い。だがホンダのN-BOXとN-WGNは別格で、普通車の平均並。 普通車でもスズキソリオX ・三菱デリカD:2は軽以下。 ①衝突安全性について サイズである程度衝突安全性能が決まってしまう。 軽自動車のボディの規格枠は決まっており、全長は3395mm、全幅は1475mmで、全車が共通になっています。最近の売れ筋モデルはそのほとんどが規格いっぱいのギリギリサイズで造られています。 小型/普通車の大きさはいろいろですが、5ナンバーサイズの小型車に属するコンパクトなホンダフィットは、全長が3990mm、全幅は1
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く