この講義資料は,著者のホームページhttp://hosho.ees.hokudai.ac.jp/~kubo/ce/EesLecture2008.htmlからダウンロードできます。
工学系の大学生なら、2回生ぐらいで習うフーリエ変換。フーリエ級数やらフーリエ展開やらの式だけ覚えさせられて、フーリエ変換の意味を理解してない人が多いようです。 そこで、フーリエ変換とは何か?をサクっと説明してみましょう。 全ての信号は、上図のようにsin波の足しあわせで表現することが出来ます。 具体的には、周波数が1のsinxと周波数が2のsin2xと周波数が3のsin3xと・・・周波数がnのsinnxを足し合わせることで、あらゆる信号を表現することが出来るのです。 しかし、ただ単にy=sinx+sin2x+sin3x+・・・としたのでは1種類の信号しか表現できません。そこで、各周波数の振幅を変化させることで、あらゆる信号を表現するのです。 上記の信号の場合、y=4*sinx+0.5*sin2x+2*sin3x+sin4xと表現できます。 さて、先程の図を用いて、周波数を横軸に、振幅の大き
転職してから1年とちょっとが経ち、Pythonをメイン言語としてからも同じくらいが経った。最近やっとnumpy/scipyの使い方のコツがわかってきたと思うので、マサカリ飛んでくるのを覚悟でなんか書いてみようと思う。 転職して初めてPythonを使ったというわけではない(実際wafのwscriptとかは書いたことある)が、まあでもほぼ初心者同然だった。学習曲線でいうとPythonはすごく良い言語だと思う。Python本体の言語仕様については、わりとすぐに覚えることができた。だが一方、numpy/scipyについては、そう簡単ではなく習得するにはそれなりに時間がかかったと思う。 ケーススタディ たとえば\(N\times M\)行列\(B\), \( M\times L \)行列\( C \), \( M \)次元ベクトル\(a=(a_k)_{1\leq k \leq M}\)が与えられて
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く