並び順

ブックマーク数

期間指定

  • から
  • まで

321 - 360 件 / 4434件

新着順 人気順

figureの検索結果321 - 360 件 / 4434件

  • GitHub Actions Supply Chain Attack: A Targeted Attack on Coinbase Expanded to the Widespread tj-actions/changed-files Incident: Threat Assessment (Updated 4/2)

    GitHub Actions Supply Chain Attack: A Targeted Attack on Coinbase Expanded to the Widespread tj-actions/changed-files Incident: Threat Assessment (Updated 4/2) Executive Summary Update April 2: Recent investigations have revealed preliminary steps in the tj-actions and reviewdog compromise that were not known until now. We have pieced together the stages that led to the original compromise, provid

      GitHub Actions Supply Chain Attack: A Targeted Attack on Coinbase Expanded to the Widespread tj-actions/changed-files Incident: Threat Assessment (Updated 4/2)
    • Document Layout Analysisに物体検出を利用したDocument Object Detectionのすゝめ - LayerX エンジニアブログ

      はじめに こんにちは。バクラク事業部 機械学習チームの機械学習エンジニアの上川(@kamikawa)です。 バクラクではAI-OCRという機能を用いて、請求書や領収書をはじめとする書類にOCRを実行し、書類日付や支払い金額などの項目内容をサジェストすることで、お客様が手入力する手間を省いています。 書類から特定の項目を抽出する方法は、自然言語処理や画像認識、近年はマルチモーダルな手法などたくさんあるのですが、今回は項目抽出のための物体検出モデルを構築するまでの手順について紹介します。 Document Layout Analysisとは Document Layout Analysisとは、文書のレイアウトを解析するタスク(直訳)のことを指します。具体的には、文書内のさまざまな要素(例えば、テキスト、画像、表、見出し、段落など)を抽出し、それぞれの位置や意味などを明らかにすることを目的とし

        Document Layout Analysisに物体検出を利用したDocument Object Detectionのすゝめ - LayerX エンジニアブログ
      • GPU向けコンパイラの最適化の紹介と論文のサーベイ - Jicchoの箱

        この記事では,私の研究分野であるGPU向けコンパイラの最適化の紹介と論文のサーベイを行う. 以下,随時更新. 分岐発散 (Branch Divergence) 分岐発散とは Independent Thread Scheduling 分岐発散に対する最適化 Software based approaches Hardware based approaches その他 サーベイ論文 カーネル融合 (Kernel Fusion) Kernel Fusionとは 垂直融合(vertical fusion) 水平融合(horizontal fusion) Inner Thread Block Inter Thread Block カーネル融合に関する論文 その他のGPU関連の論文 Dimensionally redundant instruction elimination Others 分岐発散

          GPU向けコンパイラの最適化の紹介と論文のサーベイ - Jicchoの箱
        • DevTools architecture refresh: migrating DevTools to TypeScript  |  Blog  |  Chrome for Developers

          This post is part of a series of blog posts describing the changes we are making to DevTools' architecture and how it is built. Following up on our migration to JavaScript modules and migration to Web Components, today we are continuing our blog post series on the changes we are making to Devtools' architecture and how it is built. (If you have not seen it already, we posted a video on our work of

          • 生成AIを駆使して、バーチャル水田で稲作をシミュレート - Insight Edge Tech Blog

            こんにちは。InsightEdgeのDataScientistのSugaです。最近もサウナに通っていますが、サウナ好きのなかではオロポという飲み物があります。 オロナミンC+ポカリスエットというもので独特な味がして気にっています。さて、今回は、生成AIを駆使して、バーチャル水田で稲作をシミュレーションしてみようと思います。 取り組むきっかけ 最近のニュースから 最近のニュースを見ていたら、「農林水産省、「天穂のサクナヒメ」とコラボ」という記事がありました。知らない方もいると思うので、少し説明すると、「天穂(てんすい)のサクナヒメ」というゲーム作品が2020年にリリースされました。ゲームの中で米作りの工程をする必要があり、その内容がとてもリアルだと話題になりました。さらに、農林水産省の公式WEBサイトがゲームの攻略に使えるということがわかり、そのことがニュースになっていたりしました。 You

              生成AIを駆使して、バーチャル水田で稲作をシミュレート - Insight Edge Tech Blog
            • Recoil Patterns: Hierarchic & Separation

              This article will discuss practical patterns in Recoil. It’s an advance topic that goes beyond Recoil basics, so we won’t spend time describing Recoil or its fundamentals concepts. If you’re not familiar with Recoil I suggest starting with the following sources: * Official Recoil YouTube * Recoil documentation This article is brought to you by WeKnow and represents insights gained during architect

                Recoil Patterns: Hierarchic & Separation
              • Faster JavaScript calls · V8

                Show navigation JavaScript allows calling a function with a different number of arguments than the expected number of parameters, i.e., one can pass fewer or more arguments than the declared formal parameters. The former case is called under-application and the latter is called over-application. In the under-application case, the remaining parameters get assigned the undefined value. In the over-a

                • フェルメールの名画『窓辺で手紙を読む女』に隠された真の姿が修復される - ナゾロジー

                  17世紀を代表するオランダの天才画家、ヨハネス・フェルメール(Johannes Vermeer・1632-1675)。 彼の傑作の一つである『窓辺で手紙を読む女』(1657〜1659年頃)の修復作業がこのほど完了しました。 本作は、1979年のX線スキャン調査の際、背景の壁に”画中画”が隠されていることが分かっていました。 2018年から約3年の月日をかけて修復した結果、塗りつぶされていたキューピッドの立像画の復元に成功したとのことです。 修復作業は、本作を所蔵するドレスデン国立古典絵画館(アルテ・マイスター絵画館)により行われています。 Mysterious Cupid Found Hidden in 17th Century Vermeer Masterpiece https://www.ancient-origins.net/news-history-archaeology/joha

                    フェルメールの名画『窓辺で手紙を読む女』に隠された真の姿が修復される - ナゾロジー
                  • Kafka Brokerのcompaction動作の詳細とチューニング方法について - Repro Tech Blog

                    Reproでチーフアーキテクトとして働いているid:joker1007です。 今回、Kafka Brokerのcompaction動作について調査しチューニングすることでパフォーマンス改善の成果が得られたため、そのノウハウをブログにまとめておきました。 かなりマニアックな内容なので、需要は多くないと思いますが、私が調査した限りでは日本語で同じ様な内容のブログ記事はほとんど存在しなかったため、Kafkaを自前で運用している人にとっては役に立つ内容かもしれません。 compactionとは (参考: https://kafka.apache.org/documentation/#compaction) Kafkaの基本的なデータ削除ポリシーは一定時間が経過したら過去のデータをそのまま削除するdeleteというポリシーを使う。 これは、log.retention.hoursという設定でコントロー

                      Kafka Brokerのcompaction動作の詳細とチューニング方法について - Repro Tech Blog
                    • Extending SQLite with Rust to support Excel files as virtual tables

                      This article explains how SQLite can be extended with Rust. In particular, it will outline SQLite’s mechanism called virtual tables and showcase how we can use it from Rust programming language. In the end, we will have a working extension that can be dynamically loaded and used from SQLite. This article does not claim to be an exhaustive guide about extending SQLite with Rust, but I hope the read

                      • Machine Learning Trends You Need to Know - Gradient Flow

                        Insights and trends that will help you navigate the AI landscape. By Assaf Araki and Ben Lorica. Automation and democratization are on the rise AutoML tools are designed to automate the process of training and deploying machine learning. Such tools have progressed to the point where they can produce adequate models for many use cases. Moreover, in domains where model hubs and foundation models (e.

                          Machine Learning Trends You Need to Know - Gradient Flow
                        • Interview with Ryan Dahl, Node.js & Deno creator by Evrone

                          In an interview with Evrone, Ryan Dahl speaks about the main challenges in Deno, the future of JavaScript and TypeScript, and tells how he would have changed his approach to Node.js if he could travel back in time. We met with Ryan Dahl, the creator of Node.js, to discuss the origins of the platform, its impact on JavaScript, and his thoughts on its future. In the interview he also reflected on hi

                            Interview with Ryan Dahl, Node.js & Deno creator by Evrone
                          • Kafka is dead, long live Kafka

                            TL;DRWarpStream is an Apache Kafka® protocol compatible data streaming platform built directly on top of S3. It's delivered as a single, stateless Go binary so there are no local disks to manage, no brokers to rebalance, and no ZooKeeper to operate. WarpStream is 5-10x cheaper than Kafka in the cloud because data streams directly to and from S3 instead of using inter-zone networking, which can be

                              Kafka is dead, long live Kafka
                            • OWASP Top 10:2021

                              Introduction Welcome to the OWASP Top 10 - 2021 Welcome to the latest installment of the OWASP Top 10! The OWASP Top 10 2021 is all-new, with a new graphic design and an available one-page infographic you can print or obtain from our home page. A huge thank you to everyone that contributed their time and data for this iteration. Without you, this installment would not happen. THANK YOU! What's cha

                              • Understanding all of Python, through its builtins

                                Python as a language is comparatively simple. And I believe, that you can learn quite a lot about Python and its features, just by learning what all of its builtins are, and what they do. And to back up that claim, I'll be doing just that. Just to be clear, this is not going to be a tutorial post. Covering such a vast amount of material in a single blog post, while starting from the beginning is p

                                  Understanding all of Python, through its builtins
                                • The Gentle Singularity

                                  We are past the event horizon; the takeoff has started. Humanity is close to building digital superintelligence, and at least so far it’s much less weird than it seems like it should be. Robots are not yet walking the streets, nor are most of us talking to AI all day. People still die of disease, we still can’t easily go to space, and there is a lot about the universe we don’t understand. And yet,

                                  • Am I FLoCed?

                                    Google is testing FLoC on Chrome users worldwide. Find out if you're one of them. Google is running a Chrome "origin trial" to test out an experimental new tracking feature called Federated Learning of Cohorts (aka "FLoC"). According to Google, the trial currently affects 0.5% of users in selected regions, including Australia, Brazil, Canada, India, Indonesia, Japan, Mexico, New Zealand, the Phili

                                      Am I FLoCed?
                                    • What We Learned from a Year of Building with LLMs (Part I)

                                      Join the O'Reilly online learning platform. Get a free trial today and find answers on the fly, or master something new and useful. Learn more It’s an exciting time to build with large language models (LLMs). Over the past year, LLMs have become “good enough” for real-world applications. The pace of improvements in LLMs, coupled with a parade of demos on social media, will fuel an estimated $200B

                                        What We Learned from a Year of Building with LLMs (Part I)
                                      • UI Testing Handbook

                                        OverviewUI testing is integral to delivering high-quality experiences. But there are so many ways to test that it can be overwhelming to figure out what's right for your project. This guide distills learnings from leading teams such as Target, Adobe, O'Reilly and Shopify into a pragmatic testing strategy that offers comprehensive coverage, easy setup, and low maintenance. We'll walk through the pr

                                          UI Testing Handbook
                                        • 機械学習をコモディティ化する AutoML ツールの評価 - RAKUS Developers Blog | ラクス エンジニアブログ

                                          こんにちは、開発エンジニアの amdaba_sk(ペンネーム未定)です。 昨年度まで、ラクスの開発部ではこれまで社内で利用していなかった技術要素を自社の開発に適合するか検証し、ビジネス要求に対して迅速に応えられるようにそなえる 「開(か)発の未(み)来に先(せん)手をうつプロジェクト(通称:かみせんプロジェクト)」というプロジェクトがありました。本年度からは規模を拡大し、「技術推進プロジェクト」と名称を改めて再スタートされました。 本記事では、昨年度かみせんプロジェクトとしての最後のテーマとなった機械学習テーマの延長として 2020 年度上期に行った「AutoML ツールの調査と評価」について取り組み結果を報告します。 (ちなみに機械学習テーマは前年度から継続していたこともあり、上期で終了となってしまいました。残念……) なお過去の報告記事はかみせんカテゴリからどうぞ。技術推進プロジェクト

                                            機械学習をコモディティ化する AutoML ツールの評価 - RAKUS Developers Blog | ラクス エンジニアブログ
                                          • An AnandTech Interview with Jim Keller: 'The Laziest Person at Tesla'

                                            Topics Covered AMD, Zen, and Project Skybridge Managing 10000 People at Intel The Future with Tenstorrent Engineers and People Skills Arm vs x86 vs RISC-V Living a Life of Abstraction Thoughts on Moore's Law Engineering the Right Team Idols, Maturity, and the Human Experience Nature vs Nurture Pushing Everyone To Be The Best Security, Ethics, and Group Belief Chips Made by AI, and Beyond Silicon A

                                              An AnandTech Interview with Jim Keller: 'The Laziest Person at Tesla'
                                            • Pythonで実践する時系列データ分析: pandasとProphetで未来を予測する - Qiita

                                              はじめに ビジネスの世界で「先を読む」ことの重要性は言うまでもありません。売上予測、需要予測、株価分析など、時系列データを扱う機会は非常に多いですよね。しかし、時系列データの分析は一筋縄ではいきません。トレンド、季節性、外部要因など、考慮すべき要素が多岐にわたります。 そこで本記事では、Pythonを使って時系列データを効果的に分析する方法をご紹介します。特に、データサイエンティストの強い味方であるpandasライブラリの時系列機能と、FacebookのAIチームが開発した予測ライブラリProphetに焦点を当てます。 これらのツールを使いこなせば、複雑な時系列データでも、まるで未来を見通すかのように分析できるようになります。さあ、一緒にPythonで時を操る魔法を学んでいきましょう! 1. pandasを使った基本的な時系列データ操作 1.1 データの読み込みと前処理 まず、時系列データ

                                                Pythonで実践する時系列データ分析: pandasとProphetで未来を予測する - Qiita
                                              • A Notoriously Hateful Japanese Composer’s Music Just Opened the Tokyo Olympics

                                                WorldA Notoriously Hateful Japanese Composer’s Music Just Opened the Tokyo Olympics In yet another tone-deaf move, organizers used a song by a virulently homophobic and ultranationalist figure to open the Olympics—despite many warnings it might go over very badly.

                                                  A Notoriously Hateful Japanese Composer’s Music Just Opened the Tokyo Olympics
                                                • How Prime Video updates its app for more than 8,000 device types

                                                  At Prime Video, we’re delivering content to millions of customers on more than 8,000 device types, such as gaming consoles, TVs, set-top boxes, and USB-powered streaming sticks. When we want to do an update, every one of those devices requires a separate native release, posing a difficult trade-off between updatability and performance. In the past year, we’ve been using WebAssembly (Wasm), a frame

                                                    How Prime Video updates its app for more than 8,000 device types
                                                  • How we built JSR

                                                    We recently launched the JavaScript Registry - JSR. It’s a new registry for JavaScript and TypeScript designed to offer a significantly better experience than npm for both package authors and users: It natively supports publishing TypeScript source code, which is used to auto-generate documentation for your package It’s secure-by-default, supporting token-less publishing from GitHub Actions and pa

                                                      How we built JSR
                                                    • Prototyping in Rust | corrode Rust Consulting

                                                      Programming is an iterative process - as much as we would like to come up with the perfect solution from the start, it rarely works that way. Good programs often start as quick prototypes. The bad ones stay prototypes, but the best ones evolve into production code. Whether you’re writing games, CLI tools, or designing library APIs, prototyping helps tremendously in finding the best approach before

                                                        Prototyping in Rust | corrode Rust Consulting
                                                      • Hypervisor Development in Rust Part 1

                                                        Updated in 2024 Figure: Red Pill and Blue Pill (Wikipedia: Red pill and blue pill) IntroductionIn the ever-evolving field of information security, curiosity and continuous learning drive innovation. This blog series is tailored for those deeply engaged in experimental projects, leveraging Rust’s capabilities to push the boundaries of what’s possible. The focus on Rust, after exploring various prog

                                                        • LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog

                                                          はじめに こんにちは。Algomatic LLM STUDIO 機械学習エンジニアの宮脇(@catshun_)です。 Wang+’23 - A Survey on Large Language Model Based Autonomous Agents ChatGPT が発表されてからおよそ 1 年が経ち、AutoGPT, BabyAGI, HuggingGPT, Generative Agents, ChatDev, Mind2Web, Voyager, MetaGPT, Self-Recovery Prompting, OpenCodeInterpreter, AutoAgents などなど、大規模言語モデル (LLM) の抱負な知識および高度な推論能力を活用した LLM エージェント (AIエージェント) が発表されています。 直近ではコード生成からデバッグ、デプロイまで自律的に行う

                                                            LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog
                                                          • A toy DNS resolver

                                                            February 1, 2022 Hello! I wrote a comic last week called “life of a DNS query” that explains how DNS resolvers work. In this post, I want to explain how DNS resolvers work in a different way – with a short Go program that does the same thing described in the comic. The main function (resolve) is actually just 20 lines, including comments. I usually find it easier to understand things work when the

                                                            • Relational Databases Explained

                                                              It is often surprising how little is known about how databases operate at a surface level, considering they store almost all of the states in our applications. Yet, it's foundational to the overall success of most systems. So today, I will explain the two most important topics when working with RDBMSs indexes and transactions. So, without fully getting into the weeds on database-specific quirks, I

                                                                Relational Databases Explained
                                                              • AWS Step Functions: What Can They Be Used For? | Dashbird

                                                                State machines orchestrate the work of AWS services, like Lambda functions. When one function ends, it triggers another function to begin. Although Max Duration is significantly different, Express workflow allows more scalability. Moreover, Express workflow pricing is constructed with more details since users will have to pay for the number of executions, including the duration and memory used for

                                                                  AWS Step Functions: What Can They Be Used For? | Dashbird
                                                                • Seeing through hardware counters: a journey to threefold performance increase | by Netflix Technology Blog | Nov, 2022 | Netflix TechBlog

                                                                  By Vadim Filanovsky and Harshad Sane In one of our previous blogposts, A Microscope on Microservices we outlined three broad domains of observability (or “levels of magnification,” as we referred to them) — Fleet-wide, Microservice and Instance. We described the tools and techniques we use to gain insight within each domain. There is, however, a class of problems that requires an even stronger lev

                                                                    Seeing through hardware counters: a journey to threefold performance increase | by Netflix Technology Blog | Nov, 2022 | Netflix TechBlog
                                                                  • WordPress 6.5の新機能(フォントライブラリ、データビュー、Block Bindings API、Interactivity APIなど)

                                                                    WordPress 6.5の新機能(フォントライブラリ、データビュー、Block Bindings API、Interactivity APIなど) WordPress 6.5「レジーナ」が4月2日に正式リリースされました。この記事では、その新機能と改善点の数々をご紹介します。 特に強力なAPIが導入されていることで、WordPressの開発体験が大幅に改善されそうです。また、サイト構築やコンテンツ作成に関する嬉しい変更点も多数組み込まれています。 そして、新登場のフォントライブラリにより、コアブロックのコンテンツにカスタムフィールドの値を注入したり、サイトエディターから直接Google Fontsをダウンロードしてインストールしたりすることも可能に。新たなデザインツールとUIの強化により、全体的な編集体験もさらに向上します。 この記事でWordPress 6.5のすべてを網羅することはで

                                                                      WordPress 6.5の新機能(フォントライブラリ、データビュー、Block Bindings API、Interactivity APIなど)
                                                                    • ポ。〜人間の購買行動について〜|つかぽんたん

                                                                      先日Xでこんな投稿をしたらたくさんの反響をいただいたので、Xでは書ききれなかったことを色々書いてみようと思います。 人は買い物をするとき、自分の好みに応じて気分で選んでるから、その頻度はポアソン分布に従うって聞いて いやいやそんな簡単なら需要予測なんていらんわw と思い、家計簿アプリのデータで確かめてみたら、綺麗に理論値と一致してて震えた 所詮俺の行動なんて理論通りなんだ…って気持ちになった pic.twitter.com/t8jKF9O46I — つかぽんたん (@tsukapontan_) March 30, 2025 人は買い物するとき、考えて選んでるようで実はランダムに選んでるらしい最近森岡毅さんの「確率思考の戦略論」を今更ながら読んでみたところ、気になる説明がありました 人は1人1人、それぞれのプレファレンスに基づいたエボークト・セットに合ったサイコロを持ち、そのカテゴリーの購買

                                                                        ポ。〜人間の購買行動について〜|つかぽんたん
                                                                      • Planning for AGI and beyond

                                                                        Our mission is to ensure that artificial general intelligence—AI systems that are generally smarter than humans—benefits all of humanity. Our mission is to ensure that artificial general intelligence—AI systems that are generally smarter than humans—benefits all of humanity. If AGI is successfully created, this technology could help us elevate humanity by increasing abundance, turbocharging the gl

                                                                          Planning for AGI and beyond
                                                                        • Building Netflix’s Distributed Tracing Infrastructure

                                                                          “@Netflixhelps Why doesn’t Tiger King play on my phone?” — a Netflix member via Twitter This is an example of a question our on-call engineers need to answer to help resolve a member issue — which is difficult when troubleshooting distributed systems. Investigating a video streaming failure consists of inspecting all aspects of a member account. In our previous blog post we introduced Edgar, our t

                                                                            Building Netflix’s Distributed Tracing Infrastructure
                                                                          • Why Turborepo is migrating from Go to Rust – Vercel

                                                                            Turborepo is a high-performance build system for JavaScript and TypeScript codebases. We're reimagining build systems, taking inspiration from tools like Buck and Bazel, to make them accessible for everyone. At the heart of Turborepo is a very simple idea: never do the same work twice. We accomplish this through incremental builds, parallel execution, and Remote Caching. As usage has grown and pro

                                                                              Why Turborepo is migrating from Go to Rust – Vercel
                                                                            • Writing a file system from scratch in Rust | carlosgaldino

                                                                              Writing a file system from scratch in Rust Jul 27, 2020 Data produced by programs need to be stored somewhere for future reference, and there must be some sort of organisation so we can quickly retrieve the desired information. A file system (FS) is responsible for this task and provides an abstraction over the storage devices where the data is physically stored. In this post, we will learn more a

                                                                              • How Turborepo is porting from Go to Rust - Vercel

                                                                                Our strategy for making updates and maintaining stability while we migrate languages. In a previous blog post, we talked about why we are porting Turborepo, the high-performance build system for JavaScript and TypeScript, from Go to Rust. Now, let's talk about how. Today, our porting effort is in full swing, moving more and more code to Rust. But when we were starting out, we had to make sure that

                                                                                  How Turborepo is porting from Go to Rust - Vercel
                                                                                • The New Three-Tier Application | DBOS

                                                                                  In the beginning (that is, the 90’s), developers created the three-tier application. Per Martin Fowler, these tiers were the data source tier, managing persistent data, the domain tier, implementing the application’s primary business logic, and the presentation tier, handling the interaction between the user and the software. The motivation for this separation is as relevant today as it was then:

                                                                                    The New Three-Tier Application | DBOS