並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 5 件 / 5件

新着順 人気順

machine-learningの検索結果1 - 5 件 / 5件

  • GitHub - microsoft/ML-For-Beginners: 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all

    🌍 Travel around the world as we explore Machine Learning by means of world cultures 🌍 Cloud Advocates at Microsoft are pleased to offer a 12-week, 26-lesson curriculum all about Machine Learning. In this curriculum, you will learn about what is sometimes called classic machine learning, using primarily Scikit-learn as a library and avoiding deep learning, which is covered in our AI for Beginners

      GitHub - microsoft/ML-For-Beginners: 12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all
    • 外資IT企業のSoftware Engineer - Machine Learningのオファーをもらうためにやったこと - 肉球でキーボード

      写真は前職の最終出社日に同期と朝まで飲んで撮った渋谷スクランブルスクエア この記事について 本記事では自分が外資IT企業のSoftware Engineer - Machine Learning(機械学習エンジニア)に応募して、オファーをいただくまでにやったことを書きます。 外資IT企業のSoftware Engineerに関する日本語ドキュメントは、既に多くの方が素晴らしい記事を公開してくれていますが、Machine Learning / Data Science専門のポジションに関する情報はまだまだ少ない印象です。 本記事が外資IT企業でMachine Learning / Data Science関連の職を目指す人の参考になればと思います。 本記事には以下の内容は含まれません。 具体的な面接項目・質問内容 お金の話 企業ごとの面接項目についてはGlassdoor, LeetCode、

        外資IT企業のSoftware Engineer - Machine Learningのオファーをもらうためにやったこと - 肉球でキーボード
      • 機械学習を「社会実装」するということ 2023年版 / Social Implementation of Machine Learning 2023

        機械学習を「社会実装」する際に待ち受けている罠と、その解決方法の考察 (2023年版) です。今回は、機械学習プロジェクトに取り組む私たちに何ができるか?といった内容を盛り込みました。 ※この資料は、東京大学メタバース工学部リスキリング工学教育プログラム GCI 2022 Winterの講義で使用…

          機械学習を「社会実装」するということ 2023年版 / Social Implementation of Machine Learning 2023
        • Interpretable Machine Learning

          Interpretable Machine Learning A Guide for Making Black Box Models Explainable. Christoph Molnar 2021-05-31 要約 機械学習は、製品や処理、研究を改善するための大きな可能性を秘めています。 しかし、コンピュータは通常、予測の説明をしません。これが機械学習を採用する障壁となっています。 本書は、機械学習モデルや、その判断を解釈可能なものにすることについて書かれています。 解釈可能性とは何かを説明した後、決定木、決定規則、線形回帰などの単純で解釈可能なモデルについて学びます。 その後の章では、特徴量の重要度 (feature importance)やALE(accumulated local effects)や、個々の予測を説明するLIMEやシャープレイ値のようなモデルに非依存な手法(mo

          • 因果推論の先へ―機械学習で因果効果を予測する『反実仮想機械学習(Counterfactual Machine Learning)』入門

            はじめに ARISE analytics の近藤です。本記事では、次世代の意思決定技術として注目されている反実仮想機械学習(Counterfactual Machine Learning:CFML)を紹介します。 本記事は、CFMLを日本語で体系的に整理し、初学者の理解を手助けすることをねらいとして執筆しました。本記事の理解促進につながるように、ベースとなった勉強会資料を記載します。こちらも併せて閲覧いただくことで理解の助けになれば幸いです。 目次 ・ はじめに ・ Counterfactual Machine Learning(CFML) ・ Off-Policy Evaluation(OPE) ・ CFMLを支える技術(オープンデータとツール) ・ おわりに Counterfactual Machine Learning(CFML) CFMLをめぐるトレンドとビジネス CFMLは産業界

              因果推論の先へ―機械学習で因果効果を予測する『反実仮想機械学習(Counterfactual Machine Learning)』入門
            1