エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント2件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
SVMのマージン最大化についてしつこく考えてみる - 射撃しつつ前転 改
SVMの説明というと、よく出てくるのはマージンの最大化である。しかし、実装を行う場合には、どちらかと... SVMの説明というと、よく出てくるのはマージンの最大化である。しかし、実装を行う場合には、どちらかというと目的関数をどうやって最小化しようかな、というところの方が重要(注:主形式を勾配法で最適化する場合の話です)で、この間にある微妙なギャップを超えるのは微妙ながらも大変なような気がしている。このギャップをどうやったら埋められるのかというところを考えてみたい。考えながら書いてきちんと推敲しておりませんのでご注意ください。 SVMってなに、という説明でよくあるパターンは、線形識別器(というか、SVM)の学習というのはパラメーターをいじって分離(超)平面をいい感じに引くことですよ、というところから始まり、いい感じってなんだろうか、マージンが最大化されるように引くといいっぽいよね、けど分離不可能な場合はマージンの値が負になることがあるよね、そこでソフトマージンというものを定義して、マージンが負にな
2014/10/18 リンク