サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
参議院選挙2025
qiita.com/Nezura
今更ですが、RNNについてです。 RNNもCNNと同様に約2年前に実装していましたが、なかなか書けませんでした。少し時間ができたので、書きます。 RNNですが、例によってMNISTを使って確かめます。 時系列データ RNNは、例えば、株価の推移、商品の売り上げなど時刻ごとに変化するデータの予測に用いられます。 次元としては、以下のような2次元データです。 (t, d) t:時系列長、d:説明変数 tは、月次データの12か月分であれば12、日々データで1週間分であれば7になります。 ここでは、MNISTの画像を時系列データとみなします。 MNISTの画像の例です。 以下のように、上部のピクセルから順に1時刻、2時刻となり最後が28時刻です。 (28,28)のデータになります。 スキャナで上から順番に読み込んでいくイメージです。 RNN(リカレントニューラルネットワーク) 時系列データは、前時
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
MNISTの予測をディープラーニング(ニューラルネットワーク)で行います。実は、ディープラーニング(ニューラルネットワーク)の実装は簡単です。数十ステップで98%程度の精度を達成できます。 (注意事項) ディープラーニング(ニューラルネットワーク)の学習方法を理解すること目的としたプログラムです。MNISTデータ程度のデータを想定しています。大量のデータやデータによっては、この実装だけは対応できません。。あくまでもディープラーニング(ニューラルネットワーク)の基本を理解するという視点でご覧ください。 ニューラルネットワーク 以下のような図を見たことがありますか?脳を模倣したニューラルネットワークです。 緑枠が脳細胞を表すニューロンです。ニューロンとニューロンの間はシナプス(青の◆)で結合しています。シナプスでのデータの受け渡し度合いを重み($ w $)で表します。ニューロン間の結合の度合い
このページを最初にブックマークしてみませんか?
『@Nezuraのマイページ - Qiita』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く