タグ

アルゴリズムに関するsalon_hiyakeのブックマーク (16)

  • ChatGPTのコア技術「GPT」をざっくり理解する - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ※記事はOracleの下記Meetup「Oracle Big Data Jam Session」で実施予定の内容です。 ※セミナー実施済の動画に関しては以下をご参照ください。 記事の対象者 これから機械学習を利用した開発をしていきたい方 機械学習のトレンド技術を知りたい方 なるべく初歩的な内容から学習したい方 はじめに Transformerの登場以降、著しい技術革新が続くここ数年、特にOpenAI社のChatGPTのサービス開始以降、おびただしい数の技術ブログや記事がインターネット上に存在する中、記事に目を留めていただいてありが

    ChatGPTのコア技術「GPT」をざっくり理解する - Qiita
  • アルゴリズムの世界地図 - Qiita

    こんにちは、square1001 です。 現在は東京大学の学部 1 年生をしています。私は中学 1 年の頃からプログラミングをやっていて、特にアルゴリズムが大好きです。AtCoder をはじめとする 競技プログラミング にも取り組んでいて、中高生のときは 情報オリンピック にも参加していました。 記事では、アルゴリズムや競技プログラミングに興味がある方、あるいはプログラミングをやっているけどアルゴリズムをよく知らない方に アルゴリズムはどんなもので アルゴリズムを使うとどんな問題が解けて アルゴリズムが地球のように広く、多様で、奥深く、そして楽しいこと を知ってもらおうと思っています。 アルゴリズムの世界へようこそ 時代は 2020 年代に突入し、急速に IT 化 や DX が進んでいく中で、問題を効率的に解くアルゴリズム技術の重要性が、ますます高まっています。そして、アルゴリズムは、世

    アルゴリズムの世界地図 - Qiita
  • 再帰関数を学ぶと、どんな世界が広がるか - Qiita

    0. はじめに 再帰関数は初めて学ぶときに壁になりがちで なんとなくわかった...けれど どんな場面で使えるのだろう...いい感じの例を探したい! という気持ちになりがちです。再帰関数は、なかなかその動きを直感的に想像することが難しいため、掴み所が無いと感じてしまいそうです。 そこで記事では 再帰関数の動きを追いまくることで、再帰関数自体に慣れる 再帰的なアルゴリズムの実例に多数触れることで、世界を大きく広げる! ことを目標とします。特に「再帰関数がどういうものかはわかったけど、使いどころがわからない」という方のモヤモヤ感を少しでも晴らすことができたら嬉しいです。なお記事では、ソースコード例に用いるプログラミング言語として C++ を用いておりますが、基的にはプログラミング言語に依存しない部分についての解説を行っています。 追記 1. 再帰関数とは 再帰の意味はとても広いです。自分自

    再帰関数を学ぶと、どんな世界が広がるか - Qiita
  • 繋がりを可視化する グラフ理論入門|es

    個人的に、一番面白いデータ構造であり探索アルゴリズムです。 ここで言うグラフは円グラフや、棒グラフのことではないです。プログラミングで扱うのは、図のように、点と線を繋げたものです。 ズバリ、人と人の繋がりを表現できます。 今回もJavascriptで実装します。 グラフ理論は、SNSだったり、レコメンドだったり、地図の経路だったり ルーティングだったり、点と点の繋がりを可視化します。繋がりを表現するデータ構造です。 巨大なインターネットもそうです。 そいう意味で、すごく身近なアルゴリズムですよ。 グラフの基は次の2点で構成されています。 ・ノード:node(vertex) -  点(人、物、場所) ・エッジ:edge  - 辺(繋がり、経路) 上の図を見ると一目瞭然ですね。ノードを人だとしたら、エッジが関係性です。まずは、これだけ理解できれば大丈夫です。 ちなみに、方向がない辺を無向グラ

    繋がりを可視化する グラフ理論入門|es
  • アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita

    今の場合は A さんが 31 歳の場合のストーリーでしたが、A さんが 20 歳~ 35 歳のうちのどの年齢であったとしても、似たようなストーリーで必ず 4 回の質問で当てることができます!(他の例も是非考えてみてください。) ちなみに、このような「真ん中で切ってどちらかに絞って行く」タイプのアルゴリズムには二分探索法という名前がついています。応用情報技術者試験でも頻出のテーマですので馴染みのある方も多いと思います。 1-2. つまり、アルゴリズムとは 上の年齢当てゲームという問題では、相手の年齢を当てる「方法・手順」を二分探索法に基づいて導きました。このようにアルゴリズムとは、 問題を解くための方法・手順 のことです。さて、アルゴリズムと聞くと「コンピュータ上で実装されたプログラム」のことを思い浮かべる方も多いと思いますが、必ずしもコンピュータと関係がある必要はなく、日常生活でも多々登場

    アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita
  • 差分検出アルゴリズム三種盛り - Object.create(null)

    こんばんは. 気がつけばもうずいぶんと涼しくなってきました. 勢い余って凍ってしまったりせぬよう, くれぐれも普段の言動にはお気をつけください. はじめに さて, 我々人類にはどうしても二つの文字列 (あるいは行ごとに区切られたテキスト) 間の差分を求めなければいけない瞬間が発生します. 先人たちはそういった時のために diff のようなツールを開発し, それを利用することで文明はめざましい発展を遂げてきました. しかしながら, 使用するアルゴリズムを比較検討したい場合, 「差分」の定義を変えるなどして既存のアルゴリズムに変更を加えたい場合, diff のない異世界に飛ばされて自分で実装しなければいけない時などにおいては, 差分検出アルゴリズムについての理解が必要不可欠です. というわけで, この記事では文字列間の差分検出とは何かということと, 差分を求める三種類のアルゴリズムの紹介・解説

    差分検出アルゴリズム三種盛り - Object.create(null)
  • プログラマのための文書推薦入門 (社内勉強会の発表資料) - y_uti のブログ

    勤務先の社内勉強会で、機械学習を用いた文書推薦*1に関する基的なことがらについて説明しました。その資料を公開します。 プログラマのための文書推薦入門 from y-uti 数学やコンピュータサイエンスを専門的に学んでいないエンジニアでも理解しやすいように、できるだけ数式を使わずに説明したつもりです。厳密性にはこだわっていないので、専門家からはあちこちツッコミを受ける内容かもしれません。 プログラマ向けということで、実際にコンピュータ上で動作を確認できるように、Wikipedia のデータを対象にして類似文書検索を行うスクリプトを作成しました。GitHub に置いてあります。 y-uti/document-recommendation · GitHub *1:推薦というより情報検索、類似文書検索という方が適切だったかもしれません。

    プログラマのための文書推薦入門 (社内勉強会の発表資料) - y_uti のブログ
  • 産総研:ビッグデータから新たな科学的発見をもたらす統計手法を開発

    ビッグデータからの科学的発見のためには、正確な検定値(P値)の算出が必要。 超高速アルゴリズムを用いた新たな統計検定手法を開発し、発見力を大幅に改善した。 物理学、医学、化学など全ての実験科学において世界中での広い利用が期待される。 JST 課題達成型基礎研究の一環として、産業技術総合研究所 生命情報工学研究センターの津田 宏治 主任研究員(JST ERATO「湊離散構造処理系プロジェクト」グループリーダー)、東京工業大学 大学院情報理工学研究科 計算工学専攻の瀬々 潤 准教授、理化学研究所 統合生命医科学研究センターの岡田 眞里子 チームリーダーらは、従来に比べて格段に高い精度で誤発見の確率を示す検定値(P値)を計算するアルゴリズム(手順)を開発しました。 自然科学で得られるデータ量は増加の一途をたどり、これらを有効に解析できる方法が望まれています。しかし、従来の統計検定手法は観測できる

  • 文字列検索(BM法)

    Boyer-Mooreのアルゴリズム BM法の原理 KMP法は『理論的には優れているが,実戦には弱い』 というアルゴリズム でした。 これに対して,BM法は『理論的にも優れていて,実戦にも強い』 と いう頼もしいアルゴリズムです。 実用的には,BM法は最も速い文字列探索ア ルゴリズムだということができます。パターンとテキストを重ね合わせて,末尾から先頭に向かって順番に文字を 比較していき,パターンとテキストの不一致が見つかったら,不一致の原因に なった文字に応じてパターンをずらす分量を決める,というのがBM法の考 え方です。 たとえば,左の図のようにテキストabdefghにパターンabcを重ね合わ せて比較することを考えましょう。 まずパターンの最後の文字をテキストと比 較します(左図(1))。 パターンの最後の文字はcで,対応するテキストは dになっています。

  • 再帰呼出し

    ある関数 f の定義の中に f 自身を呼び出している箇所があるとき、その呼び出しを再帰呼出し(recursive call)と言います。また、そのような定義は再帰的(recursive)である、と言います。 再帰呼出しと言っても、呼出しのための特別な構文があるわけではなく、普通に関数を呼出すだけです。呼出す側と呼出される側がたまたま同じ関数になっているだけのことです。しかし、再帰呼出しには特別な魅力があります。何かの処理をくり返したいようなとき、for 文や while 文のようなくり返し構文を使うことが多いわけですが、そうした構文を使わずに再帰的な定義により計算することも可能です。実際、ある種の処理はくり返しを使うよりも再帰的に定義したほうが自然かつ簡潔に記述できることがあります。 この章では、再帰的な関数定義の比較的簡単な例を学びます。 再帰呼出しの例 再帰呼出しの簡単な例としてよく引

  • あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。 - 人力検索はてな

    あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。

  • 404 Blog Not Found:プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10

    2007年11月26日18:15 カテゴリMathLightweight Languages プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10 ぎくっ あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。 - 人力検索はてな なぜぎくってしているかというと、実はすでにアルゴリズムの発注を受けているからなのだ。いつまでも伏せておくのもなんなので、ここにえいやっとdiscloseしてしまうことにする。 アルゴリズム大募集! C&R研究所 - トップページ その下書きもかねて、そこでも紹介しないわけに行かないメジャーなアルゴリズムをとりあえず10個紹介しておくことにする。 ユークリッドの互除法(Euclidean algorithm) その昔(数百年ほど前)は「アルゴリズム」といえば、「手順一般」を指すのではなく、この「互除法

    404 Blog Not Found:プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10
  • ダイクストラ法(最短経路問題)

    ダイクストラ法 (Dijkstra's Algorithm) は最短経路問題を効率的に解くグラフ理論におけるアルゴリズムです。 スタートノードからゴールノードまでの最短距離とその経路を求めることができます。 アルゴリズム 以下のグラフを例にダイクストラのアルゴリズムを解説します。 円がノード,線がエッジで,sがスタートノード,gがゴールノードを表しています。 エッジの近くに書かれている数字はそのエッジを通るのに必要なコスト(たいてい距離または時間)です。 ここではエッジに向きが存在しない(=どちらからでも通れる)無向グラフだとして扱っていますが, ダイクストラ法の場合はそれほど無向グラフと有向グラフを区別して考える必要はありません。 ダイクストラ法はDP(動的計画法)的なアルゴリズムです。 つまり,「手近で明らかなことから順次確定していき,その確定した情報をもとにさらに遠くまで確定していく

  • データマイニング・アルゴリズムのトレンド

    HDDの大容量化と分散処理技術の発達でビッグデータの処理が容易になってきたので、ここ数年はデータマイニングが地味なブームになっている(NYT - For Today’s Graduate, Just One Word: Statistics)。2000年代前半のデータウェアハウスのブームではコンセプトだけが先走っていた(大園(2002))ので、随分と地に足がついた感じだ。しかし人気のアルゴリズムを見ている限りは、まだ十分にデータ分析がされているように思えない。 1. 10年間でソフトウェア的に進歩 地に足がついていると言うのは、ソフトウェア的に色々な面で進歩が見られたことだ。ビッグデータの利用が可能になった事から、応用事例が増えているように思える。 1. 分散処理技術の進歩によるビッグデータの利用 ハードウェア技術の進歩による高速化も著しいが、分散処理技術の進歩はビッグデータの利用を容易に

    データマイニング・アルゴリズムのトレンド
  • ALGORITHM NOTE 動的計画法

    n × n のマス目のそれぞれに 1 または 0 が記してあり、その中から 1 だけから成る最大の長方形の面積を求めて下さい。 これは前に考えた正方形探索の応用で、今回は最大の長方形を探します。この問題も正方形探索で用いたアルゴリズムを応用して動的計画法で解くことができますが、正方形探索ほど単純な式では解決できません。左上角から右下角に向かって個々の要素を計算していく過程で、既に計算された左と上の要素を利用していきますが、長方形探索の場合、W[i][j] の値はそこから左上方向に向かってできる正方形の辺の長さではなく、そこから左上方向に向かってできる全ての長方形の情報を記録する必要があります。このアルゴリズムの詳しい解説が、プログラム・プロムナードに掲載されています。このアルゴリズムは、現在の要素を求めるために重複を避けながら左と上の要素をマージしたりと、プログラムがやや複雑になります。

  • 「最強最速アルゴリズマー養成講座」関連の最新 ニュース・レビュー・解説 記事 まとめ - ITmedia Keywords

    最強最速アルゴリズマー養成講座: そのアルゴリズム、貪欲につき――貪欲法のススメ アルゴリズムの世界において、欲張りであることはときに有利に働くことがあります。今回は、貪欲法と呼ばれるアルゴリズムを紹介しながら、ハードな問題に挑戦してみましょう。このアルゴリズムが使えるかどうかの見極めができるようになれば、あなたの論理的思考力はかなりのレベルなのです。(2010/9/4) 最強最速アルゴリズマー養成講座: 病みつきになる「動的計画法」、その深淵に迫る 数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。(2010/5/15) 最強最速アルゴリズマー養成講座: アルゴリズマーの登

  • 1