静岡理工科大学情報学部コンピュータシステム学科菅沼研究室のページです.主として,プログラミング言語( HTML,C/C++, Java, JavaScript, PHP, HTML,VB,C# ),及び,システムエンジニアとしての基礎知識(数学,オペレーションズ・リサーチやシステム工学関連の手法)を扱っています.
目次 目次 はじめに 遺伝的アルゴリズム 用語説明 ステップ1(初期世代の作成) ステップ2 (選択) ステップ3 (交叉) ステップ4 (突然変異) Pythonで実装 実行結果 はじめに 機械学習では重みの最適化に勾配降下法が一般的に採用されているようですが、なぜだろう?と前から疑問に思っていました。 確かに勾配降下法はコスト関数の勾配方向に向かって重みを更新するだけなので、非常に簡単に実装できるのですが、学習率をうまく調整しないと発散したり、逆に学習が中々進まなかったりという問題があります。 極値解にも落ち入り易く、またコスト関数が複雑すぎて勾配が計算できない場合には使えません。 あくまで今の私にとってですが、勾配降下法はあまりいい印象が無いです。 そこで遺伝的アルゴリズムを使って重みを最適化したらどうかな?というのが今回の趣旨です。 遺伝的アルゴリズム 昔仕事で遺伝的アルゴリズム使
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く