はてなブックマークアプリ

サクサク読めて、
アプリ限定の機能も多数!

アプリで開く

はてなブックマーク

  • はてなブックマークって?
  • アプリ・拡張の紹介
  • ユーザー登録
  • ログイン
  • Hatena

はてなブックマーク

トップへ戻る

  • 総合
    • 人気
    • 新着
    • IT
    • 最新ガジェット
    • 自然科学
    • 経済・金融
    • おもしろ
    • マンガ
    • ゲーム
    • はてなブログ(総合)
  • 一般
    • 人気
    • 新着
    • 社会ニュース
    • 地域
    • 国際
    • 天気
    • グルメ
    • 映画・音楽
    • スポーツ
    • はてな匿名ダイアリー
    • はてなブログ(一般)
  • 世の中
    • 人気
    • 新着
    • 新型コロナウイルス
    • 働き方
    • 生き方
    • 地域
    • 医療・ヘルス
    • 教育
    • はてな匿名ダイアリー
    • はてなブログ(世の中)
  • 政治と経済
    • 人気
    • 新着
    • 政治
    • 経済・金融
    • 企業
    • 仕事・就職
    • マーケット
    • 国際
    • はてなブログ(政治と経済)
  • 暮らし
    • 人気
    • 新着
    • カルチャー・ライフスタイル
    • ファッション
    • 運動・エクササイズ
    • 結婚・子育て
    • 住まい
    • グルメ
    • 相続
    • はてなブログ(暮らし)
    • 掃除・整理整頓
    • 雑貨
    • 買ってよかったもの
    • 旅行
    • アウトドア
    • 趣味
  • 学び
    • 人気
    • 新着
    • 人文科学
    • 社会科学
    • 自然科学
    • 語学
    • ビジネス・経営学
    • デザイン
    • 法律
    • 本・書評
    • 将棋・囲碁
    • はてなブログ(学び)
  • テクノロジー
    • 人気
    • 新着
    • IT
    • セキュリティ技術
    • はてなブログ(テクノロジー)
    • AI・機械学習
    • プログラミング
    • エンジニア
  • おもしろ
    • 人気
    • 新着
    • まとめ
    • ネタ
    • おもしろ
    • これはすごい
    • かわいい
    • 雑学
    • 癒やし
    • はてなブログ(おもしろ)
  • エンタメ
    • 人気
    • 新着
    • スポーツ
    • 映画
    • 音楽
    • アイドル
    • 芸能
    • お笑い
    • サッカー
    • 話題の動画
    • はてなブログ(エンタメ)
  • アニメとゲーム
    • 人気
    • 新着
    • マンガ
    • Webマンガ
    • ゲーム
    • 任天堂
    • PlayStation
    • アニメ
    • バーチャルYouTuber
    • オタクカルチャー
    • はてなブログ(アニメとゲーム)
    • はてなブログ(ゲーム)
  • おすすめ

    iPhone 17

『qiita.com』

  • 人気
  • 新着
  • すべて
  • 機械学習のアルゴリズム(2クラス分類から多クラス分類へ) - Qiita

    3 users

    qiita.com/hiro88hyo

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 以前、「機械学習の分類」で取り上げたアルゴリズムについて、その理論とpythonでの実装、scikit-learnを使った分析についてステップバイステップで学習していく。個人の学習用として書いてるので間違いなんかは大目に見て欲しいと思います。 これまで、2クラス分類問題として、単純パーセプトロン、ロジスティック回帰、そしてサポートベクターマシン(基本編・応用編)を扱ってきました。 ただ、あくまで2クラスの分類だったので、それらを多クラスの分類に拡張することを考えてみます。 最初ロジスティック回帰とサポートベクターマシンの多クラ

    • テクノロジー
    • 2020/03/23 23:02
    • 機械学習のアルゴリズム(サポートベクターマシン) - Qiita

      10 users

      qiita.com/hiro88hyo

      Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 以前、「機械学習の分類」で取り上げたアルゴリズムについて、その理論とpythonでの実装、scikit-learnを使った分析についてステップバイステップで学習していく。個人の学習用として書いてるので間違いなんかは大目に見て欲しいと思います。 今回はサポートベクターマシンについて。その歴史こそ古いものの、機械学習の分野では人気の手法です。汎化性能も高く、ILSVRC2012でディープラーニングに破られるまでは最強のアルゴリズムでした。これを覚えてるとだいぶよい気がします(語彙)。 今回参考にしたのは以下のサイト。ありがとうござ

      • テクノロジー
      • 2020/03/15 23:02
      • 機械学習
      • あとで読む
      • 機械学習の分類 - Qiita

        4 users

        qiita.com/hiro88hyo

        はじめに 機械学習を勉強するにあたって、どういう順番で手をつけていこうか。これは自分にとっても非常に悩ましかった。なにしろ基礎知識すらあまりなかったわけで、いろいろあさっていくなかで、なんとなく方向性みたいなのが見えてきたのでまとめてみることにした。万人に参考になるかはなぞである。 ライブラリあるんだから使えばいいじゃん それは実に正しい。エンジンの仕組みなんて知らなくても車の運転はできる。大事なのは車を使ってどういう価値を生み出すかだ、車輪の再発明をやっている時間はないのだよ。機械学習ならscikit-learn、ディープラーニングをやるならtensorflowを使えばナウでヤングなAIなんてあっという間ですよ! 確かにそうですけどね、ベースにある理論とか知識とかがあったほうがより適切かつ効果的に道具を選択できるようになると思うんです。あーこのケースならこういう風に解いていけばいいなとい

        • テクノロジー
        • 2020/02/11 08:01

        このページはまだ
        ブックマークされていません

        このページを最初にブックマークしてみませんか?

        『qiita.com』の新着エントリーを見る

        キーボードショートカット一覧

        j次のブックマーク

        k前のブックマーク

        lあとで読む

        eコメント一覧を開く

        oページを開く

        はてなブックマーク

        • 総合
        • 一般
        • 世の中
        • 政治と経済
        • 暮らし
        • 学び
        • テクノロジー
        • エンタメ
        • アニメとゲーム
        • おもしろ
        • アプリ・拡張機能
        • 開発ブログ
        • ヘルプ
        • お問い合わせ
        • ガイドライン
        • 利用規約
        • プライバシーポリシー
        • 利用者情報の外部送信について
        • ガイドライン
        • 利用規約
        • プライバシーポリシー
        • 利用者情報の外部送信について

        公式Twitter

        • 公式アカウント
        • ホットエントリー

        はてなのサービス

        • はてなブログ
        • はてなブログPro
        • 人力検索はてな
        • はてなブログ タグ
        • はてなニュース
        • ソレドコ
        • App Storeからダウンロード
        • Google Playで手に入れよう
        Copyright © 2005-2025 Hatena. All Rights Reserved.
        設定を変更しましたx