タグ

物理とアルゴリズムに関するDark-matterのブックマーク (1)

  • マルコフ連鎖モンテカルロ法 - Wikipedia

    マルコフ連鎖モンテカルロ法(マルコフれんさモンテカルロほう、英: Markov chain Monte Carlo methods、通称MCMC)とは、求める確率分布を均衡分布として持つマルコフ連鎖を作成することによって確率分布のサンプリングを行う種々のアルゴリズムの総称である。具体的には、同時事後分布に従う乱数を継時的に生成する。代表的なMCMCとしてメトロポリス・ヘイスティングス法やギブスサンプリングがある。 MCMCで充分に多くの回数の試行を行った後のマルコフ連鎖の状態は求める目標分布の標として用いられる。試行の回数を増やすとともにサンプルの品質も向上する。 求められる特性を持つマルコフ連鎖を作成することは通常難しくない。問題は許容できる誤差内で定常分布に収束する試行の回数を決めることである。適切な連鎖なら任意の位置から始めても定常分布に速く達し、これを高速混合(rapid mix

  • 1