虚数(きょすう、英: imaginary number)とは、実数ではない複素数のことである。すなわち、虚数単位 i = √−1 を用いて表すと、 z = a + bi(a, b は実数、b ≠ 0) と表される数のことである。 実数直線上にはないため、感覚的には存在しない数ととらえられがちであるが、実数の対、実二次正方行列、多項式環の剰余環の元として実現できる(複素数#形式的構成を参照)。 複素数平面上では、虚数全体は複素数平面から実軸を除いた部分である。 実係数の三次方程式を解の公式により解くと、相異なる3個の実数解をもつ場合、虚数の立方根が現れ、係数の加減乗除と冪根だけでは表せない(還元不能)。虚数はこの過程で認識されるようになった。ルネ・デカルトは1637年に、複素数の虚部を 仏: "nombre imaginaire"(「想像上の数」)と名付けた[1]。 「虚数」と訳したのは、1