タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

PythonとVisualizationとdeferredに関するagwのブックマーク (2)

  • Pythonを使って簡単にデータを視覚化する

    世の中のことをもっと知るにはどうしたら良いだろうと思うときがある。世の中の多くの事柄はログやデータに落とされる。Googleなどの検索サイトは良い例だろう。さて、そのログやデータをどうすれば良いのか? 多くの場合、視覚化が有効な手段となる。 まずは身の回りの日常的なデータやログを何とかしたい。ただ、日常のデータを視覚化するのに数十行以上のコードは書きたくない。まるで息をするかのごとく自然に視覚化を行いたいのだ。そのためには1~2行、長くて数行で済ませることが必要だ。そこでPythonとmatplotlibを使う。加えて、IPythonがあればなお良い。IPythonの導入については以前のブログ記事であるIPythonの埋め込みプロットが素晴らしいを参考にして欲しい。 まずは事前にnumpyとmatplotlibをインポートしておく。できればscipyも。 >>> from numpy im

    Pythonを使って簡単にデータを視覚化する
  • 第7回 代表的な離散型確率分布 | gihyo.jp

    今回は、前回導入したNumpy、そしてグラフを描画するmatplotlibを使って、いくつかの代表的な分布を紹介していきます。 第5回「「よく使う分布」はどうしてよく使う?」の項でも代表的な分布が紹介されていました。そこでは、“⁠この状況(モデル)では、この分布を使う⁠”というパターンを想定する、それが“⁠よく使う分布⁠”がいくつも存在する理由と言及されていましたが、どのような状況でどのような分布を使えばいいのでしょうか? 実際、どのような状況のときに、どのような分布を使うと説明しやすいかを考えながら、みていきましょう。 matplotlibのインストール matplotlibはpythonとNumpyのための高機能なグラフ描画ライブラリです。今後もグラフを描画することがあるかと思いますので、ここでインストールしておきましょう。 公式サイトのダウンロードから各OS向けのパッケージを入手して

    第7回 代表的な離散型確率分布 | gihyo.jp
  • 1